{"title":"沿环状线的结quandle分解","authors":"Marco Bonatto, Alessia Cattabriga, Eva Horvat","doi":"10.1142/s0218216523500980","DOIUrl":null,"url":null,"abstract":"<p>We study the structure of the augmented fundamental quandle of a knot whose complement contains an incompressible torus. We obtain the relationship between the fundamental quandle of a satellite knot and the fundamental quandles/groups of its companion and pattern knots. General presentations of the fundamental quandles of a link in a solid torus, a link in a lens space and a satellite knot are described. In the last part of this paper, an algebraic approach to the study of affine quandles is presented and some known results about the Alexander module and quandle colorings are obtained.</p>","PeriodicalId":54790,"journal":{"name":"Journal of Knot Theory and Its Ramifications","volume":"19 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Knot quandle decomposition along a torus\",\"authors\":\"Marco Bonatto, Alessia Cattabriga, Eva Horvat\",\"doi\":\"10.1142/s0218216523500980\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We study the structure of the augmented fundamental quandle of a knot whose complement contains an incompressible torus. We obtain the relationship between the fundamental quandle of a satellite knot and the fundamental quandles/groups of its companion and pattern knots. General presentations of the fundamental quandles of a link in a solid torus, a link in a lens space and a satellite knot are described. In the last part of this paper, an algebraic approach to the study of affine quandles is presented and some known results about the Alexander module and quandle colorings are obtained.</p>\",\"PeriodicalId\":54790,\"journal\":{\"name\":\"Journal of Knot Theory and Its Ramifications\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2024-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Knot Theory and Its Ramifications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s0218216523500980\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Knot Theory and Its Ramifications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0218216523500980","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
We study the structure of the augmented fundamental quandle of a knot whose complement contains an incompressible torus. We obtain the relationship between the fundamental quandle of a satellite knot and the fundamental quandles/groups of its companion and pattern knots. General presentations of the fundamental quandles of a link in a solid torus, a link in a lens space and a satellite knot are described. In the last part of this paper, an algebraic approach to the study of affine quandles is presented and some known results about the Alexander module and quandle colorings are obtained.
期刊介绍:
This Journal is intended as a forum for new developments in knot theory, particularly developments that create connections between knot theory and other aspects of mathematics and natural science. Our stance is interdisciplinary due to the nature of the subject. Knot theory as a core mathematical discipline is subject to many forms of generalization (virtual knots and links, higher-dimensional knots, knots and links in other manifolds, non-spherical knots, recursive systems analogous to knotting). Knots live in a wider mathematical framework (classification of three and higher dimensional manifolds, statistical mechanics and quantum theory, quantum groups, combinatorics of Gauss codes, combinatorics, algorithms and computational complexity, category theory and categorification of topological and algebraic structures, algebraic topology, topological quantum field theories).
Papers that will be published include:
-new research in the theory of knots and links, and their applications;
-new research in related fields;
-tutorial and review papers.
With this Journal, we hope to serve well researchers in knot theory and related areas of topology, researchers using knot theory in their work, and scientists interested in becoming informed about current work in the theory of knots and its ramifications.