沿环状线的结quandle分解

Pub Date : 2024-03-22 DOI:10.1142/s0218216523500980
Marco Bonatto, Alessia Cattabriga, Eva Horvat
{"title":"沿环状线的结quandle分解","authors":"Marco Bonatto, Alessia Cattabriga, Eva Horvat","doi":"10.1142/s0218216523500980","DOIUrl":null,"url":null,"abstract":"<p>We study the structure of the augmented fundamental quandle of a knot whose complement contains an incompressible torus. We obtain the relationship between the fundamental quandle of a satellite knot and the fundamental quandles/groups of its companion and pattern knots. General presentations of the fundamental quandles of a link in a solid torus, a link in a lens space and a satellite knot are described. In the last part of this paper, an algebraic approach to the study of affine quandles is presented and some known results about the Alexander module and quandle colorings are obtained.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Knot quandle decomposition along a torus\",\"authors\":\"Marco Bonatto, Alessia Cattabriga, Eva Horvat\",\"doi\":\"10.1142/s0218216523500980\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We study the structure of the augmented fundamental quandle of a knot whose complement contains an incompressible torus. We obtain the relationship between the fundamental quandle of a satellite knot and the fundamental quandles/groups of its companion and pattern knots. General presentations of the fundamental quandles of a link in a solid torus, a link in a lens space and a satellite knot are described. In the last part of this paper, an algebraic approach to the study of affine quandles is presented and some known results about the Alexander module and quandle colorings are obtained.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s0218216523500980\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0218216523500980","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了包含不可压缩环的补集的结的增强基序结构。我们得到了卫星结的基本群与它的伴结和模式结的基本群之间的关系。本文描述了实体环中的链接、透镜空间中的链接和卫星结的基本群的一般表述。在本文的最后一部分,介绍了研究仿射阶数的代数方法,并获得了关于亚历山大模数和阶数着色的一些已知结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Knot quandle decomposition along a torus

We study the structure of the augmented fundamental quandle of a knot whose complement contains an incompressible torus. We obtain the relationship between the fundamental quandle of a satellite knot and the fundamental quandles/groups of its companion and pattern knots. General presentations of the fundamental quandles of a link in a solid torus, a link in a lens space and a satellite knot are described. In the last part of this paper, an algebraic approach to the study of affine quandles is presented and some known results about the Alexander module and quandle colorings are obtained.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信