虚拟三价空间图的不变量

Pub Date : 2024-02-27 DOI:10.1142/s0218216523500876
Evan Carr, Nancy Scherich, Sherilyn Tamagawa
{"title":"虚拟三价空间图的不变量","authors":"Evan Carr, Nancy Scherich, Sherilyn Tamagawa","doi":"10.1142/s0218216523500876","DOIUrl":null,"url":null,"abstract":"<p>We create an invariant of virtual <span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><mi>Y</mi></math></span><span></span>-oriented trivalent spatial graphs using colorings by <i>virtual Niebrzydowski algebras</i>. This paper generalizes the color invariants using <i>virtual tribrackets</i> and <i>Niebrzydowski algebras</i> by Nelson–Pico, and Graves-Nelson-T. We computed all tribrackets, Niebrzydowski algebras and virtual Niebrzydowski algebras of orders 3 and 4, and provide generative code for all data sets.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An invariant of virtual trivalent spatial graphs\",\"authors\":\"Evan Carr, Nancy Scherich, Sherilyn Tamagawa\",\"doi\":\"10.1142/s0218216523500876\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We create an invariant of virtual <span><math altimg=\\\"eq-00001.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>Y</mi></math></span><span></span>-oriented trivalent spatial graphs using colorings by <i>virtual Niebrzydowski algebras</i>. This paper generalizes the color invariants using <i>virtual tribrackets</i> and <i>Niebrzydowski algebras</i> by Nelson–Pico, and Graves-Nelson-T. We computed all tribrackets, Niebrzydowski algebras and virtual Niebrzydowski algebras of orders 3 and 4, and provide generative code for all data sets.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-02-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s0218216523500876\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0218216523500876","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们利用虚拟尼布日多夫斯基代数的着色创建了虚拟 Y 向三价空间图的不变式。本文推广了内尔松-皮科(Nelson-Pico)和格雷夫斯-内尔松-T(Graves-Nelson-T)使用虚拟三元组和尼布日多夫斯基(Niebrzydowski)代数的颜色不变式。我们计算了所有三元组、阶数为 3 和 4 的尼布日多夫斯基代数和虚拟尼布日多夫斯基代数,并提供了所有数据集的生成代码。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
An invariant of virtual trivalent spatial graphs

We create an invariant of virtual Y-oriented trivalent spatial graphs using colorings by virtual Niebrzydowski algebras. This paper generalizes the color invariants using virtual tribrackets and Niebrzydowski algebras by Nelson–Pico, and Graves-Nelson-T. We computed all tribrackets, Niebrzydowski algebras and virtual Niebrzydowski algebras of orders 3 and 4, and provide generative code for all data sets.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信