Valeriy Bardakov, Bogdan Chuzhinov, Ivan Emel’yanenkov, Maxim Ivanov, Elizaveta Markhinina, Timur Nasybullov, Sergey Panov, Nina Singh, Sergey Vasyutkin, Valeriy Yakhin, Andrei Vesnin
{"title":"Representations of flat virtual braids which do not preserve the forbidden relations","authors":"Valeriy Bardakov, Bogdan Chuzhinov, Ivan Emel’yanenkov, Maxim Ivanov, Elizaveta Markhinina, Timur Nasybullov, Sergey Panov, Nina Singh, Sergey Vasyutkin, Valeriy Yakhin, Andrei Vesnin","doi":"10.1142/s0218216523500931","DOIUrl":null,"url":null,"abstract":"<p>In the paper, we construct a representation <span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><mi>𝜃</mi><mo>:</mo><msub><mrow><mstyle><mtext mathvariant=\"normal\">FVB</mtext></mstyle></mrow><mrow><mi>n</mi></mrow></msub><mo>→</mo><mstyle><mtext mathvariant=\"normal\">Aut</mtext></mstyle><mo stretchy=\"false\">(</mo><msub><mrow><mi>F</mi></mrow><mrow><mn>2</mn><mi>n</mi></mrow></msub><mo stretchy=\"false\">)</mo></math></span><span></span> of the flat virtual braid group <span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mstyle><mtext mathvariant=\"normal\">FVB</mtext></mstyle></mrow><mrow><mi>n</mi></mrow></msub></math></span><span></span> on <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mi>n</mi></math></span><span></span> strands by automorphisms of the free group <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>F</mi></mrow><mrow><mn>2</mn><mi>n</mi></mrow></msub></math></span><span></span> with <span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><mn>2</mn><mi>n</mi></math></span><span></span> generators which does not preserve the forbidden relations in the flat virtual braid group. This representation gives a positive answer to the problem formulated by Bardakov in the list of unsolved problems in virtual knot theory and combinatorial knot theory by Fenn <i>et al</i>.</p><p>Also we find the set of normal generators of the groups <span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mstyle><mtext mathvariant=\"normal\">VP</mtext></mstyle></mrow><mrow><mi>n</mi></mrow></msub><mo stretchy=\"false\">∩</mo><msub><mrow><mi>H</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span><span></span> in <span><math altimg=\"eq-00007.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mstyle><mtext mathvariant=\"normal\">VB</mtext></mstyle></mrow><mrow><mi>n</mi></mrow></msub></math></span><span></span>, <span><math altimg=\"eq-00008.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mstyle><mtext mathvariant=\"normal\">FVP</mtext></mstyle></mrow><mrow><mi>n</mi></mrow></msub><mo stretchy=\"false\">∩</mo><msub><mrow><mstyle><mtext mathvariant=\"normal\">FH</mtext></mstyle></mrow><mrow><mi>n</mi></mrow></msub></math></span><span></span> in <span><math altimg=\"eq-00009.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mstyle><mtext mathvariant=\"normal\">FVB</mtext></mstyle></mrow><mrow><mi>n</mi></mrow></msub></math></span><span></span>, <span><math altimg=\"eq-00010.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mstyle><mtext mathvariant=\"normal\">GVP</mtext></mstyle></mrow><mrow><mi>n</mi></mrow></msub><mo stretchy=\"false\">∩</mo><msub><mrow><mstyle><mtext mathvariant=\"normal\">GH</mtext></mstyle></mrow><mrow><mi>n</mi></mrow></msub></math></span><span></span> in <span><math altimg=\"eq-00011.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mstyle><mtext mathvariant=\"normal\">GVB</mtext></mstyle></mrow><mrow><mi>n</mi></mrow></msub></math></span><span></span>, which play an important role in the study of the kernel of the representation <span><math altimg=\"eq-00012.gif\" display=\"inline\" overflow=\"scroll\"><mi>𝜃</mi></math></span><span></span>.</p>","PeriodicalId":54790,"journal":{"name":"Journal of Knot Theory and Its Ramifications","volume":"28 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2024-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Knot Theory and Its Ramifications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0218216523500931","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
In the paper, we construct a representation of the flat virtual braid group on strands by automorphisms of the free group with generators which does not preserve the forbidden relations in the flat virtual braid group. This representation gives a positive answer to the problem formulated by Bardakov in the list of unsolved problems in virtual knot theory and combinatorial knot theory by Fenn et al.
Also we find the set of normal generators of the groups in , in , in , which play an important role in the study of the kernel of the representation .
期刊介绍:
This Journal is intended as a forum for new developments in knot theory, particularly developments that create connections between knot theory and other aspects of mathematics and natural science. Our stance is interdisciplinary due to the nature of the subject. Knot theory as a core mathematical discipline is subject to many forms of generalization (virtual knots and links, higher-dimensional knots, knots and links in other manifolds, non-spherical knots, recursive systems analogous to knotting). Knots live in a wider mathematical framework (classification of three and higher dimensional manifolds, statistical mechanics and quantum theory, quantum groups, combinatorics of Gauss codes, combinatorics, algorithms and computational complexity, category theory and categorification of topological and algebraic structures, algebraic topology, topological quantum field theories).
Papers that will be published include:
-new research in the theory of knots and links, and their applications;
-new research in related fields;
-tutorial and review papers.
With this Journal, we hope to serve well researchers in knot theory and related areas of topology, researchers using knot theory in their work, and scientists interested in becoming informed about current work in the theory of knots and its ramifications.