Valeriy Bardakov, Bogdan Chuzhinov, Ivan Emel’yanenkov, Maxim Ivanov, Elizaveta Markhinina, Timur Nasybullov, Sergey Panov, Nina Singh, Sergey Vasyutkin, Valeriy Yakhin, Andrei Vesnin
{"title":"Representations of flat virtual braids which do not preserve the forbidden relations","authors":"Valeriy Bardakov, Bogdan Chuzhinov, Ivan Emel’yanenkov, Maxim Ivanov, Elizaveta Markhinina, Timur Nasybullov, Sergey Panov, Nina Singh, Sergey Vasyutkin, Valeriy Yakhin, Andrei Vesnin","doi":"10.1142/s0218216523500931","DOIUrl":null,"url":null,"abstract":"<p>In the paper, we construct a representation <span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><mi>𝜃</mi><mo>:</mo><msub><mrow><mstyle><mtext mathvariant=\"normal\">FVB</mtext></mstyle></mrow><mrow><mi>n</mi></mrow></msub><mo>→</mo><mstyle><mtext mathvariant=\"normal\">Aut</mtext></mstyle><mo stretchy=\"false\">(</mo><msub><mrow><mi>F</mi></mrow><mrow><mn>2</mn><mi>n</mi></mrow></msub><mo stretchy=\"false\">)</mo></math></span><span></span> of the flat virtual braid group <span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mstyle><mtext mathvariant=\"normal\">FVB</mtext></mstyle></mrow><mrow><mi>n</mi></mrow></msub></math></span><span></span> on <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mi>n</mi></math></span><span></span> strands by automorphisms of the free group <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>F</mi></mrow><mrow><mn>2</mn><mi>n</mi></mrow></msub></math></span><span></span> with <span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><mn>2</mn><mi>n</mi></math></span><span></span> generators which does not preserve the forbidden relations in the flat virtual braid group. This representation gives a positive answer to the problem formulated by Bardakov in the list of unsolved problems in virtual knot theory and combinatorial knot theory by Fenn <i>et al</i>.</p><p>Also we find the set of normal generators of the groups <span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mstyle><mtext mathvariant=\"normal\">VP</mtext></mstyle></mrow><mrow><mi>n</mi></mrow></msub><mo stretchy=\"false\">∩</mo><msub><mrow><mi>H</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span><span></span> in <span><math altimg=\"eq-00007.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mstyle><mtext mathvariant=\"normal\">VB</mtext></mstyle></mrow><mrow><mi>n</mi></mrow></msub></math></span><span></span>, <span><math altimg=\"eq-00008.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mstyle><mtext mathvariant=\"normal\">FVP</mtext></mstyle></mrow><mrow><mi>n</mi></mrow></msub><mo stretchy=\"false\">∩</mo><msub><mrow><mstyle><mtext mathvariant=\"normal\">FH</mtext></mstyle></mrow><mrow><mi>n</mi></mrow></msub></math></span><span></span> in <span><math altimg=\"eq-00009.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mstyle><mtext mathvariant=\"normal\">FVB</mtext></mstyle></mrow><mrow><mi>n</mi></mrow></msub></math></span><span></span>, <span><math altimg=\"eq-00010.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mstyle><mtext mathvariant=\"normal\">GVP</mtext></mstyle></mrow><mrow><mi>n</mi></mrow></msub><mo stretchy=\"false\">∩</mo><msub><mrow><mstyle><mtext mathvariant=\"normal\">GH</mtext></mstyle></mrow><mrow><mi>n</mi></mrow></msub></math></span><span></span> in <span><math altimg=\"eq-00011.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mstyle><mtext mathvariant=\"normal\">GVB</mtext></mstyle></mrow><mrow><mi>n</mi></mrow></msub></math></span><span></span>, which play an important role in the study of the kernel of the representation <span><math altimg=\"eq-00012.gif\" display=\"inline\" overflow=\"scroll\"><mi>𝜃</mi></math></span><span></span>.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0218216523500931","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In the paper, we construct a representation of the flat virtual braid group on strands by automorphisms of the free group with generators which does not preserve the forbidden relations in the flat virtual braid group. This representation gives a positive answer to the problem formulated by Bardakov in the list of unsolved problems in virtual knot theory and combinatorial knot theory by Fenn et al.
Also we find the set of normal generators of the groups in , in , in , which play an important role in the study of the kernel of the representation .