晶格交叉的加泰罗尼亚态系数 II: ΘA 态展开的应用

Pub Date : 2024-04-18 DOI:10.1142/s0218216524500032
Mieczyslaw K. Dabkowski, Cheyu Wu
{"title":"晶格交叉的加泰罗尼亚态系数 II: ΘA 态展开的应用","authors":"Mieczyslaw K. Dabkowski, Cheyu Wu","doi":"10.1142/s0218216524500032","DOIUrl":null,"url":null,"abstract":"<p>Plucking polynomial of a plane rooted tree with a delay function <span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><mi>α</mi></math></span><span></span> was introduced in 2014 by Przytycki. As shown in this paper, plucking polynomial factors when <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mi>α</mi></math></span><span></span> satisfies additional conditions. We use this result and <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi mathvariant=\"normal\">Θ</mi></mrow><mrow><mi>A</mi></mrow></msub></math></span><span></span>-state expansion introduced in our previous work to derive new properties of coefficients <span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><mi>C</mi><mo stretchy=\"false\">(</mo><mi>A</mi><mo stretchy=\"false\">)</mo></math></span><span></span> of Catalan states <span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><mi>C</mi></math></span><span></span> resulting from an <span><math altimg=\"eq-00007.gif\" display=\"inline\" overflow=\"scroll\"><mo stretchy=\"false\">(</mo><mi>m</mi><mo stretchy=\"false\">×</mo><mi>n</mi><mo stretchy=\"false\">)</mo></math></span><span></span>-lattice crossing <span><math altimg=\"eq-00008.gif\" display=\"inline\" overflow=\"scroll\"><mi>L</mi><mo stretchy=\"false\">(</mo><mi>m</mi><mo>,</mo><mi>n</mi><mo stretchy=\"false\">)</mo></math></span><span></span>. In particular, we show that <span><math altimg=\"eq-00009.gif\" display=\"inline\" overflow=\"scroll\"><mi>C</mi><mo stretchy=\"false\">(</mo><mi>A</mi><mo stretchy=\"false\">)</mo></math></span><span></span> factors when <span><math altimg=\"eq-00010.gif\" display=\"inline\" overflow=\"scroll\"><mi>C</mi></math></span><span></span> has arcs with some special properties. In many instances, this yields a more efficient way for computing <span><math altimg=\"eq-00011.gif\" display=\"inline\" overflow=\"scroll\"><mi>C</mi><mo stretchy=\"false\">(</mo><mi>A</mi><mo stretchy=\"false\">)</mo></math></span><span></span>. As an application, we give closed-form formulas for coefficients of Catalan states of <span><math altimg=\"eq-00012.gif\" display=\"inline\" overflow=\"scroll\"><mi>L</mi><mo stretchy=\"false\">(</mo><mi>m</mi><mo>,</mo><mn>3</mn><mo stretchy=\"false\">)</mo></math></span><span></span>.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Coefficients of Catalan states of lattice crossing II: Applications of ΘA-state expansions\",\"authors\":\"Mieczyslaw K. Dabkowski, Cheyu Wu\",\"doi\":\"10.1142/s0218216524500032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Plucking polynomial of a plane rooted tree with a delay function <span><math altimg=\\\"eq-00002.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>α</mi></math></span><span></span> was introduced in 2014 by Przytycki. As shown in this paper, plucking polynomial factors when <span><math altimg=\\\"eq-00003.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>α</mi></math></span><span></span> satisfies additional conditions. We use this result and <span><math altimg=\\\"eq-00004.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msub><mrow><mi mathvariant=\\\"normal\\\">Θ</mi></mrow><mrow><mi>A</mi></mrow></msub></math></span><span></span>-state expansion introduced in our previous work to derive new properties of coefficients <span><math altimg=\\\"eq-00005.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>C</mi><mo stretchy=\\\"false\\\">(</mo><mi>A</mi><mo stretchy=\\\"false\\\">)</mo></math></span><span></span> of Catalan states <span><math altimg=\\\"eq-00006.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>C</mi></math></span><span></span> resulting from an <span><math altimg=\\\"eq-00007.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mo stretchy=\\\"false\\\">(</mo><mi>m</mi><mo stretchy=\\\"false\\\">×</mo><mi>n</mi><mo stretchy=\\\"false\\\">)</mo></math></span><span></span>-lattice crossing <span><math altimg=\\\"eq-00008.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>L</mi><mo stretchy=\\\"false\\\">(</mo><mi>m</mi><mo>,</mo><mi>n</mi><mo stretchy=\\\"false\\\">)</mo></math></span><span></span>. In particular, we show that <span><math altimg=\\\"eq-00009.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>C</mi><mo stretchy=\\\"false\\\">(</mo><mi>A</mi><mo stretchy=\\\"false\\\">)</mo></math></span><span></span> factors when <span><math altimg=\\\"eq-00010.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>C</mi></math></span><span></span> has arcs with some special properties. In many instances, this yields a more efficient way for computing <span><math altimg=\\\"eq-00011.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>C</mi><mo stretchy=\\\"false\\\">(</mo><mi>A</mi><mo stretchy=\\\"false\\\">)</mo></math></span><span></span>. As an application, we give closed-form formulas for coefficients of Catalan states of <span><math altimg=\\\"eq-00012.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>L</mi><mo stretchy=\\\"false\\\">(</mo><mi>m</mi><mo>,</mo><mn>3</mn><mo stretchy=\\\"false\\\">)</mo></math></span><span></span>.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s0218216524500032\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0218216524500032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

Przytycki 于 2014 年提出了具有延迟函数 α 的平面有根树的拔取多项式。正如本文所示,当 α 满足附加条件时,拔取多项式会产生因子。我们利用这一结果和之前工作中引入的 ΘA 态扩展,推导出 (m×n)- 格子交叉 L(m,n) 所产生的加泰罗尼亚态 C 的系数 C(A) 的新特性。特别是,我们证明了当 C 具有具有某些特殊性质的弧时,C(A) 的系数。在许多情况下,这将为计算 C(A) 提供更有效的方法。作为应用,我们给出了 L(m,3) 的加泰罗尼亚态系数的闭式公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Coefficients of Catalan states of lattice crossing II: Applications of ΘA-state expansions

Plucking polynomial of a plane rooted tree with a delay function α was introduced in 2014 by Przytycki. As shown in this paper, plucking polynomial factors when α satisfies additional conditions. We use this result and ΘA-state expansion introduced in our previous work to derive new properties of coefficients C(A) of Catalan states C resulting from an (m×n)-lattice crossing L(m,n). In particular, we show that C(A) factors when C has arcs with some special properties. In many instances, this yields a more efficient way for computing C(A). As an application, we give closed-form formulas for coefficients of Catalan states of L(m,3).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信