{"title":"晶格交叉的加泰罗尼亚态系数 II: ΘA 态展开的应用","authors":"Mieczyslaw K. Dabkowski, Cheyu Wu","doi":"10.1142/s0218216524500032","DOIUrl":null,"url":null,"abstract":"<p>Plucking polynomial of a plane rooted tree with a delay function <span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><mi>α</mi></math></span><span></span> was introduced in 2014 by Przytycki. As shown in this paper, plucking polynomial factors when <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mi>α</mi></math></span><span></span> satisfies additional conditions. We use this result and <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi mathvariant=\"normal\">Θ</mi></mrow><mrow><mi>A</mi></mrow></msub></math></span><span></span>-state expansion introduced in our previous work to derive new properties of coefficients <span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><mi>C</mi><mo stretchy=\"false\">(</mo><mi>A</mi><mo stretchy=\"false\">)</mo></math></span><span></span> of Catalan states <span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><mi>C</mi></math></span><span></span> resulting from an <span><math altimg=\"eq-00007.gif\" display=\"inline\" overflow=\"scroll\"><mo stretchy=\"false\">(</mo><mi>m</mi><mo stretchy=\"false\">×</mo><mi>n</mi><mo stretchy=\"false\">)</mo></math></span><span></span>-lattice crossing <span><math altimg=\"eq-00008.gif\" display=\"inline\" overflow=\"scroll\"><mi>L</mi><mo stretchy=\"false\">(</mo><mi>m</mi><mo>,</mo><mi>n</mi><mo stretchy=\"false\">)</mo></math></span><span></span>. In particular, we show that <span><math altimg=\"eq-00009.gif\" display=\"inline\" overflow=\"scroll\"><mi>C</mi><mo stretchy=\"false\">(</mo><mi>A</mi><mo stretchy=\"false\">)</mo></math></span><span></span> factors when <span><math altimg=\"eq-00010.gif\" display=\"inline\" overflow=\"scroll\"><mi>C</mi></math></span><span></span> has arcs with some special properties. In many instances, this yields a more efficient way for computing <span><math altimg=\"eq-00011.gif\" display=\"inline\" overflow=\"scroll\"><mi>C</mi><mo stretchy=\"false\">(</mo><mi>A</mi><mo stretchy=\"false\">)</mo></math></span><span></span>. As an application, we give closed-form formulas for coefficients of Catalan states of <span><math altimg=\"eq-00012.gif\" display=\"inline\" overflow=\"scroll\"><mi>L</mi><mo stretchy=\"false\">(</mo><mi>m</mi><mo>,</mo><mn>3</mn><mo stretchy=\"false\">)</mo></math></span><span></span>.</p>","PeriodicalId":54790,"journal":{"name":"Journal of Knot Theory and Its Ramifications","volume":"76 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Coefficients of Catalan states of lattice crossing II: Applications of ΘA-state expansions\",\"authors\":\"Mieczyslaw K. Dabkowski, Cheyu Wu\",\"doi\":\"10.1142/s0218216524500032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Plucking polynomial of a plane rooted tree with a delay function <span><math altimg=\\\"eq-00002.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>α</mi></math></span><span></span> was introduced in 2014 by Przytycki. As shown in this paper, plucking polynomial factors when <span><math altimg=\\\"eq-00003.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>α</mi></math></span><span></span> satisfies additional conditions. We use this result and <span><math altimg=\\\"eq-00004.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msub><mrow><mi mathvariant=\\\"normal\\\">Θ</mi></mrow><mrow><mi>A</mi></mrow></msub></math></span><span></span>-state expansion introduced in our previous work to derive new properties of coefficients <span><math altimg=\\\"eq-00005.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>C</mi><mo stretchy=\\\"false\\\">(</mo><mi>A</mi><mo stretchy=\\\"false\\\">)</mo></math></span><span></span> of Catalan states <span><math altimg=\\\"eq-00006.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>C</mi></math></span><span></span> resulting from an <span><math altimg=\\\"eq-00007.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mo stretchy=\\\"false\\\">(</mo><mi>m</mi><mo stretchy=\\\"false\\\">×</mo><mi>n</mi><mo stretchy=\\\"false\\\">)</mo></math></span><span></span>-lattice crossing <span><math altimg=\\\"eq-00008.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>L</mi><mo stretchy=\\\"false\\\">(</mo><mi>m</mi><mo>,</mo><mi>n</mi><mo stretchy=\\\"false\\\">)</mo></math></span><span></span>. In particular, we show that <span><math altimg=\\\"eq-00009.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>C</mi><mo stretchy=\\\"false\\\">(</mo><mi>A</mi><mo stretchy=\\\"false\\\">)</mo></math></span><span></span> factors when <span><math altimg=\\\"eq-00010.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>C</mi></math></span><span></span> has arcs with some special properties. In many instances, this yields a more efficient way for computing <span><math altimg=\\\"eq-00011.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>C</mi><mo stretchy=\\\"false\\\">(</mo><mi>A</mi><mo stretchy=\\\"false\\\">)</mo></math></span><span></span>. As an application, we give closed-form formulas for coefficients of Catalan states of <span><math altimg=\\\"eq-00012.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>L</mi><mo stretchy=\\\"false\\\">(</mo><mi>m</mi><mo>,</mo><mn>3</mn><mo stretchy=\\\"false\\\">)</mo></math></span><span></span>.</p>\",\"PeriodicalId\":54790,\"journal\":{\"name\":\"Journal of Knot Theory and Its Ramifications\",\"volume\":\"76 1\",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2024-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Knot Theory and Its Ramifications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s0218216524500032\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Knot Theory and Its Ramifications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0218216524500032","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
Coefficients of Catalan states of lattice crossing II: Applications of ΘA-state expansions
Plucking polynomial of a plane rooted tree with a delay function was introduced in 2014 by Przytycki. As shown in this paper, plucking polynomial factors when satisfies additional conditions. We use this result and -state expansion introduced in our previous work to derive new properties of coefficients of Catalan states resulting from an -lattice crossing . In particular, we show that factors when has arcs with some special properties. In many instances, this yields a more efficient way for computing . As an application, we give closed-form formulas for coefficients of Catalan states of .
期刊介绍:
This Journal is intended as a forum for new developments in knot theory, particularly developments that create connections between knot theory and other aspects of mathematics and natural science. Our stance is interdisciplinary due to the nature of the subject. Knot theory as a core mathematical discipline is subject to many forms of generalization (virtual knots and links, higher-dimensional knots, knots and links in other manifolds, non-spherical knots, recursive systems analogous to knotting). Knots live in a wider mathematical framework (classification of three and higher dimensional manifolds, statistical mechanics and quantum theory, quantum groups, combinatorics of Gauss codes, combinatorics, algorithms and computational complexity, category theory and categorification of topological and algebraic structures, algebraic topology, topological quantum field theories).
Papers that will be published include:
-new research in the theory of knots and links, and their applications;
-new research in related fields;
-tutorial and review papers.
With this Journal, we hope to serve well researchers in knot theory and related areas of topology, researchers using knot theory in their work, and scientists interested in becoming informed about current work in the theory of knots and its ramifications.