{"title":"晶格交叉的加泰罗尼亚态系数 II: ΘA 态展开的应用","authors":"Mieczyslaw K. Dabkowski, Cheyu Wu","doi":"10.1142/s0218216524500032","DOIUrl":null,"url":null,"abstract":"<p>Plucking polynomial of a plane rooted tree with a delay function <span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><mi>α</mi></math></span><span></span> was introduced in 2014 by Przytycki. As shown in this paper, plucking polynomial factors when <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mi>α</mi></math></span><span></span> satisfies additional conditions. We use this result and <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi mathvariant=\"normal\">Θ</mi></mrow><mrow><mi>A</mi></mrow></msub></math></span><span></span>-state expansion introduced in our previous work to derive new properties of coefficients <span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><mi>C</mi><mo stretchy=\"false\">(</mo><mi>A</mi><mo stretchy=\"false\">)</mo></math></span><span></span> of Catalan states <span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><mi>C</mi></math></span><span></span> resulting from an <span><math altimg=\"eq-00007.gif\" display=\"inline\" overflow=\"scroll\"><mo stretchy=\"false\">(</mo><mi>m</mi><mo stretchy=\"false\">×</mo><mi>n</mi><mo stretchy=\"false\">)</mo></math></span><span></span>-lattice crossing <span><math altimg=\"eq-00008.gif\" display=\"inline\" overflow=\"scroll\"><mi>L</mi><mo stretchy=\"false\">(</mo><mi>m</mi><mo>,</mo><mi>n</mi><mo stretchy=\"false\">)</mo></math></span><span></span>. In particular, we show that <span><math altimg=\"eq-00009.gif\" display=\"inline\" overflow=\"scroll\"><mi>C</mi><mo stretchy=\"false\">(</mo><mi>A</mi><mo stretchy=\"false\">)</mo></math></span><span></span> factors when <span><math altimg=\"eq-00010.gif\" display=\"inline\" overflow=\"scroll\"><mi>C</mi></math></span><span></span> has arcs with some special properties. In many instances, this yields a more efficient way for computing <span><math altimg=\"eq-00011.gif\" display=\"inline\" overflow=\"scroll\"><mi>C</mi><mo stretchy=\"false\">(</mo><mi>A</mi><mo stretchy=\"false\">)</mo></math></span><span></span>. As an application, we give closed-form formulas for coefficients of Catalan states of <span><math altimg=\"eq-00012.gif\" display=\"inline\" overflow=\"scroll\"><mi>L</mi><mo stretchy=\"false\">(</mo><mi>m</mi><mo>,</mo><mn>3</mn><mo stretchy=\"false\">)</mo></math></span><span></span>.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Coefficients of Catalan states of lattice crossing II: Applications of ΘA-state expansions\",\"authors\":\"Mieczyslaw K. Dabkowski, Cheyu Wu\",\"doi\":\"10.1142/s0218216524500032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Plucking polynomial of a plane rooted tree with a delay function <span><math altimg=\\\"eq-00002.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>α</mi></math></span><span></span> was introduced in 2014 by Przytycki. As shown in this paper, plucking polynomial factors when <span><math altimg=\\\"eq-00003.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>α</mi></math></span><span></span> satisfies additional conditions. We use this result and <span><math altimg=\\\"eq-00004.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msub><mrow><mi mathvariant=\\\"normal\\\">Θ</mi></mrow><mrow><mi>A</mi></mrow></msub></math></span><span></span>-state expansion introduced in our previous work to derive new properties of coefficients <span><math altimg=\\\"eq-00005.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>C</mi><mo stretchy=\\\"false\\\">(</mo><mi>A</mi><mo stretchy=\\\"false\\\">)</mo></math></span><span></span> of Catalan states <span><math altimg=\\\"eq-00006.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>C</mi></math></span><span></span> resulting from an <span><math altimg=\\\"eq-00007.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mo stretchy=\\\"false\\\">(</mo><mi>m</mi><mo stretchy=\\\"false\\\">×</mo><mi>n</mi><mo stretchy=\\\"false\\\">)</mo></math></span><span></span>-lattice crossing <span><math altimg=\\\"eq-00008.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>L</mi><mo stretchy=\\\"false\\\">(</mo><mi>m</mi><mo>,</mo><mi>n</mi><mo stretchy=\\\"false\\\">)</mo></math></span><span></span>. In particular, we show that <span><math altimg=\\\"eq-00009.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>C</mi><mo stretchy=\\\"false\\\">(</mo><mi>A</mi><mo stretchy=\\\"false\\\">)</mo></math></span><span></span> factors when <span><math altimg=\\\"eq-00010.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>C</mi></math></span><span></span> has arcs with some special properties. In many instances, this yields a more efficient way for computing <span><math altimg=\\\"eq-00011.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>C</mi><mo stretchy=\\\"false\\\">(</mo><mi>A</mi><mo stretchy=\\\"false\\\">)</mo></math></span><span></span>. As an application, we give closed-form formulas for coefficients of Catalan states of <span><math altimg=\\\"eq-00012.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>L</mi><mo stretchy=\\\"false\\\">(</mo><mi>m</mi><mo>,</mo><mn>3</mn><mo stretchy=\\\"false\\\">)</mo></math></span><span></span>.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s0218216524500032\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0218216524500032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Coefficients of Catalan states of lattice crossing II: Applications of ΘA-state expansions
Plucking polynomial of a plane rooted tree with a delay function was introduced in 2014 by Przytycki. As shown in this paper, plucking polynomial factors when satisfies additional conditions. We use this result and -state expansion introduced in our previous work to derive new properties of coefficients of Catalan states resulting from an -lattice crossing . In particular, we show that factors when has arcs with some special properties. In many instances, this yields a more efficient way for computing . As an application, we give closed-form formulas for coefficients of Catalan states of .