Yueheng Bao, Ari Benveniste, Marion Campisi, Nicholas Cazet, Ansel Goh, Jiantong Liu, Ethan Sherman
{"title":"Bounds in simple hexagonal lattice and classification of 11-stick knots","authors":"Yueheng Bao, Ari Benveniste, Marion Campisi, Nicholas Cazet, Ansel Goh, Jiantong Liu, Ethan Sherman","doi":"10.1142/s0218216523500979","DOIUrl":null,"url":null,"abstract":"<p>The <i>stick number</i> and the <i>edge length</i> of a knot type in the simple hexagonal lattice (sh-lattice) are the minimal numbers of sticks and edges required, respectively, to construct a knot of the given type in sh-lattice. By introducing a linear transformation between lattices, we prove that for any given knot both values in the sh-lattice are strictly less than the values in the cubic lattice. Finally, we show that the only non-trivial <span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><mn>1</mn><mn>1</mn></math></span><span></span>-stick knots in the sh-lattice are the trefoil knot (<span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mn>3</mn></mrow><mrow><mn>1</mn></mrow></msub></math></span><span></span>) and the figure-eight knot (<span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mn>4</mn></mrow><mrow><mn>1</mn></mrow></msub></math></span><span></span>).</p>","PeriodicalId":54790,"journal":{"name":"Journal of Knot Theory and Its Ramifications","volume":"38 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2024-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Knot Theory and Its Ramifications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0218216523500979","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
The stick number and the edge length of a knot type in the simple hexagonal lattice (sh-lattice) are the minimal numbers of sticks and edges required, respectively, to construct a knot of the given type in sh-lattice. By introducing a linear transformation between lattices, we prove that for any given knot both values in the sh-lattice are strictly less than the values in the cubic lattice. Finally, we show that the only non-trivial -stick knots in the sh-lattice are the trefoil knot () and the figure-eight knot ().
期刊介绍:
This Journal is intended as a forum for new developments in knot theory, particularly developments that create connections between knot theory and other aspects of mathematics and natural science. Our stance is interdisciplinary due to the nature of the subject. Knot theory as a core mathematical discipline is subject to many forms of generalization (virtual knots and links, higher-dimensional knots, knots and links in other manifolds, non-spherical knots, recursive systems analogous to knotting). Knots live in a wider mathematical framework (classification of three and higher dimensional manifolds, statistical mechanics and quantum theory, quantum groups, combinatorics of Gauss codes, combinatorics, algorithms and computational complexity, category theory and categorification of topological and algebraic structures, algebraic topology, topological quantum field theories).
Papers that will be published include:
-new research in the theory of knots and links, and their applications;
-new research in related fields;
-tutorial and review papers.
With this Journal, we hope to serve well researchers in knot theory and related areas of topology, researchers using knot theory in their work, and scientists interested in becoming informed about current work in the theory of knots and its ramifications.