不保留禁止关系的平面虚拟辫的表示

Pub Date : 2024-02-27 DOI:10.1142/s0218216523500931
Valeriy Bardakov, Bogdan Chuzhinov, Ivan Emel’yanenkov, Maxim Ivanov, Elizaveta Markhinina, Timur Nasybullov, Sergey Panov, Nina Singh, Sergey Vasyutkin, Valeriy Yakhin, Andrei Vesnin
{"title":"不保留禁止关系的平面虚拟辫的表示","authors":"Valeriy Bardakov, Bogdan Chuzhinov, Ivan Emel’yanenkov, Maxim Ivanov, Elizaveta Markhinina, Timur Nasybullov, Sergey Panov, Nina Singh, Sergey Vasyutkin, Valeriy Yakhin, Andrei Vesnin","doi":"10.1142/s0218216523500931","DOIUrl":null,"url":null,"abstract":"<p>In the paper, we construct a representation <span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><mi>𝜃</mi><mo>:</mo><msub><mrow><mstyle><mtext mathvariant=\"normal\">FVB</mtext></mstyle></mrow><mrow><mi>n</mi></mrow></msub><mo>→</mo><mstyle><mtext mathvariant=\"normal\">Aut</mtext></mstyle><mo stretchy=\"false\">(</mo><msub><mrow><mi>F</mi></mrow><mrow><mn>2</mn><mi>n</mi></mrow></msub><mo stretchy=\"false\">)</mo></math></span><span></span> of the flat virtual braid group <span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mstyle><mtext mathvariant=\"normal\">FVB</mtext></mstyle></mrow><mrow><mi>n</mi></mrow></msub></math></span><span></span> on <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mi>n</mi></math></span><span></span> strands by automorphisms of the free group <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>F</mi></mrow><mrow><mn>2</mn><mi>n</mi></mrow></msub></math></span><span></span> with <span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><mn>2</mn><mi>n</mi></math></span><span></span> generators which does not preserve the forbidden relations in the flat virtual braid group. This representation gives a positive answer to the problem formulated by Bardakov in the list of unsolved problems in virtual knot theory and combinatorial knot theory by Fenn <i>et al</i>.</p><p>Also we find the set of normal generators of the groups <span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mstyle><mtext mathvariant=\"normal\">VP</mtext></mstyle></mrow><mrow><mi>n</mi></mrow></msub><mo stretchy=\"false\">∩</mo><msub><mrow><mi>H</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span><span></span> in <span><math altimg=\"eq-00007.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mstyle><mtext mathvariant=\"normal\">VB</mtext></mstyle></mrow><mrow><mi>n</mi></mrow></msub></math></span><span></span>, <span><math altimg=\"eq-00008.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mstyle><mtext mathvariant=\"normal\">FVP</mtext></mstyle></mrow><mrow><mi>n</mi></mrow></msub><mo stretchy=\"false\">∩</mo><msub><mrow><mstyle><mtext mathvariant=\"normal\">FH</mtext></mstyle></mrow><mrow><mi>n</mi></mrow></msub></math></span><span></span> in <span><math altimg=\"eq-00009.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mstyle><mtext mathvariant=\"normal\">FVB</mtext></mstyle></mrow><mrow><mi>n</mi></mrow></msub></math></span><span></span>, <span><math altimg=\"eq-00010.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mstyle><mtext mathvariant=\"normal\">GVP</mtext></mstyle></mrow><mrow><mi>n</mi></mrow></msub><mo stretchy=\"false\">∩</mo><msub><mrow><mstyle><mtext mathvariant=\"normal\">GH</mtext></mstyle></mrow><mrow><mi>n</mi></mrow></msub></math></span><span></span> in <span><math altimg=\"eq-00011.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mstyle><mtext mathvariant=\"normal\">GVB</mtext></mstyle></mrow><mrow><mi>n</mi></mrow></msub></math></span><span></span>, which play an important role in the study of the kernel of the representation <span><math altimg=\"eq-00012.gif\" display=\"inline\" overflow=\"scroll\"><mi>𝜃</mi></math></span><span></span>.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Representations of flat virtual braids which do not preserve the forbidden relations\",\"authors\":\"Valeriy Bardakov, Bogdan Chuzhinov, Ivan Emel’yanenkov, Maxim Ivanov, Elizaveta Markhinina, Timur Nasybullov, Sergey Panov, Nina Singh, Sergey Vasyutkin, Valeriy Yakhin, Andrei Vesnin\",\"doi\":\"10.1142/s0218216523500931\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In the paper, we construct a representation <span><math altimg=\\\"eq-00001.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>𝜃</mi><mo>:</mo><msub><mrow><mstyle><mtext mathvariant=\\\"normal\\\">FVB</mtext></mstyle></mrow><mrow><mi>n</mi></mrow></msub><mo>→</mo><mstyle><mtext mathvariant=\\\"normal\\\">Aut</mtext></mstyle><mo stretchy=\\\"false\\\">(</mo><msub><mrow><mi>F</mi></mrow><mrow><mn>2</mn><mi>n</mi></mrow></msub><mo stretchy=\\\"false\\\">)</mo></math></span><span></span> of the flat virtual braid group <span><math altimg=\\\"eq-00002.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msub><mrow><mstyle><mtext mathvariant=\\\"normal\\\">FVB</mtext></mstyle></mrow><mrow><mi>n</mi></mrow></msub></math></span><span></span> on <span><math altimg=\\\"eq-00003.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>n</mi></math></span><span></span> strands by automorphisms of the free group <span><math altimg=\\\"eq-00004.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msub><mrow><mi>F</mi></mrow><mrow><mn>2</mn><mi>n</mi></mrow></msub></math></span><span></span> with <span><math altimg=\\\"eq-00005.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mn>2</mn><mi>n</mi></math></span><span></span> generators which does not preserve the forbidden relations in the flat virtual braid group. This representation gives a positive answer to the problem formulated by Bardakov in the list of unsolved problems in virtual knot theory and combinatorial knot theory by Fenn <i>et al</i>.</p><p>Also we find the set of normal generators of the groups <span><math altimg=\\\"eq-00006.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msub><mrow><mstyle><mtext mathvariant=\\\"normal\\\">VP</mtext></mstyle></mrow><mrow><mi>n</mi></mrow></msub><mo stretchy=\\\"false\\\">∩</mo><msub><mrow><mi>H</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span><span></span> in <span><math altimg=\\\"eq-00007.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msub><mrow><mstyle><mtext mathvariant=\\\"normal\\\">VB</mtext></mstyle></mrow><mrow><mi>n</mi></mrow></msub></math></span><span></span>, <span><math altimg=\\\"eq-00008.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msub><mrow><mstyle><mtext mathvariant=\\\"normal\\\">FVP</mtext></mstyle></mrow><mrow><mi>n</mi></mrow></msub><mo stretchy=\\\"false\\\">∩</mo><msub><mrow><mstyle><mtext mathvariant=\\\"normal\\\">FH</mtext></mstyle></mrow><mrow><mi>n</mi></mrow></msub></math></span><span></span> in <span><math altimg=\\\"eq-00009.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msub><mrow><mstyle><mtext mathvariant=\\\"normal\\\">FVB</mtext></mstyle></mrow><mrow><mi>n</mi></mrow></msub></math></span><span></span>, <span><math altimg=\\\"eq-00010.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msub><mrow><mstyle><mtext mathvariant=\\\"normal\\\">GVP</mtext></mstyle></mrow><mrow><mi>n</mi></mrow></msub><mo stretchy=\\\"false\\\">∩</mo><msub><mrow><mstyle><mtext mathvariant=\\\"normal\\\">GH</mtext></mstyle></mrow><mrow><mi>n</mi></mrow></msub></math></span><span></span> in <span><math altimg=\\\"eq-00011.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msub><mrow><mstyle><mtext mathvariant=\\\"normal\\\">GVB</mtext></mstyle></mrow><mrow><mi>n</mi></mrow></msub></math></span><span></span>, which play an important role in the study of the kernel of the representation <span><math altimg=\\\"eq-00012.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>𝜃</mi></math></span><span></span>.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-02-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s0218216523500931\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0218216523500931","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们通过具有 2n 个生成子的自由群 F2n 的自动变形,构建了 n 股上平面虚辫群 FVBn 的表示𝜃:FVBn→Aut(F2n),它不保留平面虚辫群中的禁止关系。同时,我们还发现了 VBn 中的 VPn∩Hn 群、FVBn 中的 FVPn∩FHn 群和 GVBn 中的 GVPn∩GHn 群的法向生成子集,它们在表示𝜃 的内核研究中起着重要作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Representations of flat virtual braids which do not preserve the forbidden relations

In the paper, we construct a representation 𝜃:FVBnAut(F2n) of the flat virtual braid group FVBn on n strands by automorphisms of the free group F2n with 2n generators which does not preserve the forbidden relations in the flat virtual braid group. This representation gives a positive answer to the problem formulated by Bardakov in the list of unsolved problems in virtual knot theory and combinatorial knot theory by Fenn et al.

Also we find the set of normal generators of the groups VPnHn in VBn, FVPnFHn in FVBn, GVPnGHn in GVBn, which play an important role in the study of the kernel of the representation 𝜃.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信