实心环结和链接的二阶和二阶着色不变式的呈现

Pub Date : 2024-03-15 DOI:10.1142/s021821652350102x
Jieon Kim, Sang Youl Lee, Mohd Ibrahim Sheikh
{"title":"实心环结和链接的二阶和二阶着色不变式的呈现","authors":"Jieon Kim, Sang Youl Lee, Mohd Ibrahim Sheikh","doi":"10.1142/s021821652350102x","DOIUrl":null,"url":null,"abstract":"<p>A diquandle is a set equipped with two quandle operations interacting via a kind of distributive laws which come from Reidemeister moves on dichromatic links. This algebraic systems provide coloring invariants for dichromatic links. In this paper, we give explicit constructions of free diquandles and diquandle presentations, and then discuss Tietze transformations for the diquandle presentations. We also introduce the fundamental diquandles for dichromatic links. Particularly, we describe the fundamental diquandles and diquandle counting invariants for knots and links in the solid torus via annulus diagrams. We append the tables of diquandles and dikei’s of orders <span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><mo>≤</mo><mn>5</mn></math></span><span></span>.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Presentations of diquandles and diquandle coloring invariants for solid torus knots and links\",\"authors\":\"Jieon Kim, Sang Youl Lee, Mohd Ibrahim Sheikh\",\"doi\":\"10.1142/s021821652350102x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A diquandle is a set equipped with two quandle operations interacting via a kind of distributive laws which come from Reidemeister moves on dichromatic links. This algebraic systems provide coloring invariants for dichromatic links. In this paper, we give explicit constructions of free diquandles and diquandle presentations, and then discuss Tietze transformations for the diquandle presentations. We also introduce the fundamental diquandles for dichromatic links. Particularly, we describe the fundamental diquandles and diquandle counting invariants for knots and links in the solid torus via annulus diagrams. We append the tables of diquandles and dikei’s of orders <span><math altimg=\\\"eq-00001.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mo>≤</mo><mn>5</mn></math></span><span></span>.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s021821652350102x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s021821652350102x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

二阶梯(diquandle)是一个集合,其中有两个阶梯运算,这两个运算通过一种分配律相互作用,分配律来自二色链路上的雷德梅斯特移动。这种代数系统为二色环提供着色不变式。在本文中,我们给出了自由二叉和二叉呈现的明确构造,然后讨论了二叉呈现的 Tietze 变换。我们还介绍了二色链接的基本二叉。特别是,我们通过环形图描述了实心环中的结和链的基本二叉和二叉计数不变式。我们附录了阶数≤5 的二叉和二叉数表。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Presentations of diquandles and diquandle coloring invariants for solid torus knots and links

A diquandle is a set equipped with two quandle operations interacting via a kind of distributive laws which come from Reidemeister moves on dichromatic links. This algebraic systems provide coloring invariants for dichromatic links. In this paper, we give explicit constructions of free diquandles and diquandle presentations, and then discuss Tietze transformations for the diquandle presentations. We also introduce the fundamental diquandles for dichromatic links. Particularly, we describe the fundamental diquandles and diquandle counting invariants for knots and links in the solid torus via annulus diagrams. We append the tables of diquandles and dikei’s of orders 5.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信