npj MicrogravityPub Date : 2024-10-03DOI: 10.1038/s41526-024-00432-1
Ester Sara Di Filippo, Sara Chiappalupi, Stefano Falone, Vincenza Dolo, Fernanda Amicarelli, Silvia Marchianò, Adriana Carino, Gabriele Mascetti, Giovanni Valentini, Sara Piccirillo, Michele Balsamo, Marco Vukich, Stefano Fiorucci, Guglielmo Sorci, Stefania Fulle
{"title":"The MyoGravity project to study real microgravity effects on human muscle precursor cells and tissue.","authors":"Ester Sara Di Filippo, Sara Chiappalupi, Stefano Falone, Vincenza Dolo, Fernanda Amicarelli, Silvia Marchianò, Adriana Carino, Gabriele Mascetti, Giovanni Valentini, Sara Piccirillo, Michele Balsamo, Marco Vukich, Stefano Fiorucci, Guglielmo Sorci, Stefania Fulle","doi":"10.1038/s41526-024-00432-1","DOIUrl":"10.1038/s41526-024-00432-1","url":null,"abstract":"<p><p>Microgravity (µG) experienced during space flights promotes adaptation in several astronauts' organs and tissues, with skeletal muscles being the most affected. In response to reduced gravitational loading, muscles (especially, lower limb and antigravity muscles) undergo progressive mass loss and alteration in metabolism, myofiber size, and composition. Skeletal muscle precursor cells (MPCs), also known as satellite cells, are responsible for the growth and maintenance of muscle mass in adult life as well as for muscle regeneration following damage and may have a major role in µG-induced muscle wasting. Despite the great relevance for astronaut health, very few data are available about the effects of real µG on human muscles. Based on the MyoGravity project, this study aimed to analyze: (i) the cellular and transcriptional alterations induced by real µG in human MPCs (huMPCs) and (ii) the response of human skeletal muscle to normal gravitational loading after prolonged exposure to µG. We evaluated the transcriptomic changes induced by µG on board the International Space Station (ISS) in differentiating huMPCs isolated from Vastus lateralis muscle biopsies of a pre-flight astronaut and an age- and sex-matched volunteer, in comparison with the same cells cultured on the ground in standard gravity (1×g) conditions. We found that huMPCs differentiated under real µG conditions showed: (i) upregulation of genes related to cell adhesion, plasma membrane components, and ion transport; (ii) strong downregulation of genes related to the muscle contraction machinery and sarcomere organization; and (iii) downregulation of muscle-specific microRNAs (myomiRs). Moreover, we had the unique opportunity to analyze huMPCs and skeletal muscle tissue of the same astronaut before and 30 h after a long-duration space flight on board the ISS. Prolonged exposure to real µG strongly affected the biology and functionality of the astronaut's satellite cells, which showed a dramatic reduction of responsiveness to activating stimuli and proliferation rate, morphological changes, and almost inability to fuse into myotubes. RNA-Seq analysis of post- vs. pre-flight muscle tissue showed that genes involved in muscle structure and remodeling are promptly activated after landing following a long-duration space mission. Conversely, genes involved in the myelination process or synapse and neuromuscular junction organization appeared downregulated. Although we have investigated only one astronaut, these results point to a prompt readaptation of the skeletal muscle mechanical components to the normal gravitational loading, but the inability to rapidly recover the physiological muscle myelination/innervation pattern after landing from a long-duration space flight. Together with the persistent functional deficit observed in the astronaut's satellite cells after prolonged exposure to real µG, these results lead us to hypothesize that a condition of inefficient regeneration is likely","PeriodicalId":54263,"journal":{"name":"npj Microgravity","volume":"10 1","pages":"92"},"PeriodicalIF":4.4,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11450100/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142373573","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Angelicae dahuricae radix alleviates simulated microgravity induced bone loss by promoting osteoblast differentiation.","authors":"Xuechao Liang, Shanfeng Jiang, Peihong Su, Chong Yin, Wei Jiang, Junhong Gao, Zhiyong Liu, Yuhang Li, Weisi Wang, Airong Qian, Ye Tian","doi":"10.1038/s41526-024-00433-0","DOIUrl":"10.1038/s41526-024-00433-0","url":null,"abstract":"<p><p>Bone loss caused by long-duration spaceflight seriously affects the skeletal health of astronauts. There are many shortcomings in currently available treatments for weightlessness-induced bone loss. The aim of this study was to evaluate the preventive effect of Angelica dahuricae Radix (AR) on simulated microgravity-induced bone loss. Here, we established a hind limb unloading (HLU) mouse model and treated HLU mice with AR (2 g/kg) for 4 weeks. Results indicated that AR significantly inhibited simulated microgravity-induced bone loss. In addition, the components in AR were analyzed using UPLC-MS/MS; results showed that a total of 224 compounds were detected in AR, which mainly contained 7 classes of components. Moreover, the network pharmacological predictions suggested that active ingredients of AR might act on PTGS2 to prevent bone loss. These results elucidate the efficacy of AR in preventing microgravity-induced bone loss and its potential for use in protecting the bone health of astronauts.</p>","PeriodicalId":54263,"journal":{"name":"npj Microgravity","volume":"10 1","pages":"91"},"PeriodicalIF":4.4,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11445575/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142362461","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
npj MicrogravityPub Date : 2024-09-28DOI: 10.1038/s41526-024-00428-x
Kevin Yates, Aaron J Berliner, Georgios Makrygiorgos, Farrah Kaiyom, Matthew J McNulty, Imran Khan, Paul Kusuma, Claire Kinlaw, Diogo Miron, Charles Legg, James Wilson, Bruce Bugbee, Ali Mesbah, Adam P Arkin, Somen Nandi, Karen A McDonald
{"title":"Nitrogen accountancy in space agriculture.","authors":"Kevin Yates, Aaron J Berliner, Georgios Makrygiorgos, Farrah Kaiyom, Matthew J McNulty, Imran Khan, Paul Kusuma, Claire Kinlaw, Diogo Miron, Charles Legg, James Wilson, Bruce Bugbee, Ali Mesbah, Adam P Arkin, Somen Nandi, Karen A McDonald","doi":"10.1038/s41526-024-00428-x","DOIUrl":"https://doi.org/10.1038/s41526-024-00428-x","url":null,"abstract":"<p><p>Food production and pharmaceutical synthesis are posited as essential biotechnologies for facilitating human exploration beyond Earth. These technologies not only offer critical green space and food agency to astronauts but also promise to minimize mass and volume requirements through scalable, modular agriculture within closed-loop systems, offering an advantage over traditional bring-along strategies. Despite these benefits, the prevalent model for evaluating such systems exhibits significant limitations. It lacks comprehensive inventory and mass balance analyses for crop cultivation and life support, and fails to consider the complexities introduced by cultivating multiple crop varieties, which is crucial for enhancing food diversity and nutritional value. Here we expand space agriculture modeling to account for nitrogen dependence across an array of crops and demonstrate our model with experimental fitting of parameters. By adding nitrogen limitations, an extended model can account for potential interruptions in feedstock supply. Furthermore, sensitivity analysis was used to distill key consequential parameters that may be the focus of future experimental efforts.</p>","PeriodicalId":54263,"journal":{"name":"npj Microgravity","volume":"10 1","pages":"90"},"PeriodicalIF":4.4,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11439006/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142332331","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
npj MicrogravityPub Date : 2024-09-09DOI: 10.1038/s41526-024-00427-y
Kelly C Rice, Ke Aira T Davis
{"title":"Brief Communication: Confocal microscopy of oral streptococcal biofilms grown in simulated microgravity using a random positioning machine.","authors":"Kelly C Rice, Ke Aira T Davis","doi":"10.1038/s41526-024-00427-y","DOIUrl":"https://doi.org/10.1038/s41526-024-00427-y","url":null,"abstract":"<p><p>Biofilms are a concern for spaceflight missions, given their propensity for biofouling systems and their potential threat to astronaut health. Herein, we describe a random positioning machine-based method for growing fluorescent protein-expressing streptococcal biofilms under simulated microgravity. Biofilms can be subsequently imaged by confocal microscopy without further manipulation, minimizing disruption of architecture. This methodology could be adaptable to other bacteria, potentially standardizing biofilm growth and study under simulated microgravity.</p>","PeriodicalId":54263,"journal":{"name":"npj Microgravity","volume":"10 1","pages":"89"},"PeriodicalIF":4.4,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11385976/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142300837","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
npj MicrogravityPub Date : 2024-08-21DOI: 10.1038/s41526-024-00425-0
Fay Ghani, Abba C Zubair
{"title":"Discoveries from human stem cell research in space that are relevant to advancing cellular therapies on Earth.","authors":"Fay Ghani, Abba C Zubair","doi":"10.1038/s41526-024-00425-0","DOIUrl":"10.1038/s41526-024-00425-0","url":null,"abstract":"<p><p>Stem cell research performed in space has provided fundamental insights into stem cell properties and behavior in microgravity including cell proliferation, differentiation, and regeneration capabilities. However, there is broader scientific value to this research including potential translation of stem cell research in space to clinical applications. Here, we present important discoveries from different studies performed in space demonstrating the potential use of human stem cells as well as the limitations in cellular therapeutics. A full understanding of the effects of microgravity in space on potentially supporting the expansion and/or enhancement of stem cell function is required to translate the findings into clinics.</p>","PeriodicalId":54263,"journal":{"name":"npj Microgravity","volume":"10 1","pages":"88"},"PeriodicalIF":4.4,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11339457/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142019590","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
npj MicrogravityPub Date : 2024-08-17DOI: 10.1038/s41526-024-00422-3
Gilles Clément, Timothy R Macaulay, Austin Bollinger, Hannah Weiss, Scott J Wood
{"title":"Functional activities essential for space exploration performed in partial gravity during parabolic flight.","authors":"Gilles Clément, Timothy R Macaulay, Austin Bollinger, Hannah Weiss, Scott J Wood","doi":"10.1038/s41526-024-00422-3","DOIUrl":"10.1038/s41526-024-00422-3","url":null,"abstract":"<p><p>Test subjects were assessed in a partial gravity environment during parabolic flight while they performed mission-critical activities that challenged their balance and locomotion. These functional activities included rising from a seated position and walking, jumping down, recovering from falls, and maintaining an upright stance. Twelve volunteers were tested during 10 parabolas that produced 0.25×g, 0.5×g, or 0.75×g, and at 1×g during level flight intervals between parabolas. Additionally, 14 other subjects were tested using identical procedures in a 1×g laboratory setting. Partial gravity altered the performance of settling after standing and navigating around obstacles. As gravity levels decreased, the time required to stand up, settle, walk, and negotiate obstacles, and the number of falls increased. Information obtained from these tests will allow space agencies to assess the vestibular, sensorimotor, and cardiovascular risks associated with different levels of partial gravity.</p>","PeriodicalId":54263,"journal":{"name":"npj Microgravity","volume":"10 1","pages":"86"},"PeriodicalIF":4.4,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11329648/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141996931","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
npj MicrogravityPub Date : 2024-08-14DOI: 10.1038/s41526-024-00424-1
Bradford M Kuhlman, Jonathan H Diaz, Trang Simon, Kimberly D Reeves, Stephen J Walker, Anthony Atala, Graça Almeida-Porada, Christopher D Porada
{"title":"Simulated microgravity impairs human NK cell cytotoxic activity against space radiation-relevant leukemic cells.","authors":"Bradford M Kuhlman, Jonathan H Diaz, Trang Simon, Kimberly D Reeves, Stephen J Walker, Anthony Atala, Graça Almeida-Porada, Christopher D Porada","doi":"10.1038/s41526-024-00424-1","DOIUrl":"10.1038/s41526-024-00424-1","url":null,"abstract":"<p><p>Natural killer (NK) cells are an important first-line of defense against malignant cells. Because of the potential for increased cancer risk from astronaut exposure to space radiation, we determined whether microgravity present during spaceflight affects the body's defenses against leukemogenesis. Human NK cells were cultured for 48 h under normal gravity and simulated microgravity (sμG), and cytotoxicity against K-562 (CML) and MOLT-4 (T-ALL) cells was measured using standard methodology or under continuous sμG. This brief exposure to sμG markedly reduced NK cytotoxicity against both leukemias, and these deleterious effects were more pronounced in continuous sμG. RNA-seq performed on NK cells from two additional healthy donors provided insight into the mechanism(s) by which sμG reduced cytotoxicity. Given our prior report of space radiation-induced human T-ALL in vivo, the reduced cytotoxicity against MOLT-4 is striking and raises the possibility that μG may increase astronaut risk of leukemogenesis during prolonged missions beyond LEO.</p>","PeriodicalId":54263,"journal":{"name":"npj Microgravity","volume":"10 1","pages":"85"},"PeriodicalIF":4.4,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11324864/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141983920","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Establishing a method for the cryopreservation of viable peripheral blood mononuclear cells in the International Space Station.","authors":"Hiroto Ishii, Rin Endo, Sanae Hamanaka, Nobuyuki Hidaka, Maki Miyauchi, Naho Hagiwara, Takahisa Miyao, Tohru Yamamori, Tatsuya Aiba, Nobuko Akiyama, Taishin Akiyama","doi":"10.1038/s41526-024-00423-2","DOIUrl":"10.1038/s41526-024-00423-2","url":null,"abstract":"<p><p>The analysis of cells frozen within the International Space Station (ISS) will provide crucial insights into the impact of the space environment on cellular functions and properties. The objective of this study was to develop a method for cryopreserving blood cells under the specific constraints of the ISS. In a ground experiment, mouse blood was directly mixed with a cryoprotectant and gradually frozen at -80 °C. Thawing the frozen blood sample resulted in the successful recovery of viable mononuclear cells when using a mixed solution of dimethylsulfoxide and hydroxyethyl starch as a cryoprotectant. In addition, we developed new freezing cases to minimize storage space utilization within the ISS freezer. Finally, we confirmed the recovery of major mononuclear immune cell subsets from the cryopreserved blood cells through a high dimensional analysis of flow cytometric data using 13 cell surface markers. Consequently, this ground study lays the foundation for the cryopreservation of viable blood cells on the ISS, enabling their analysis upon return to Earth. The application of this method in ISS studies will contribute to understanding the impact of space environments on human cells. Moreover, this method may find application in the cryopreservation of blood cells in situations where research facilities are inadequate.</p>","PeriodicalId":54263,"journal":{"name":"npj Microgravity","volume":"10 1","pages":"84"},"PeriodicalIF":4.4,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11315897/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141914569","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
npj MicrogravityPub Date : 2024-08-08DOI: 10.1038/s41526-024-00388-2
Vanja Mišković, Immacolata Greco, Christophe Minetti, Francesca Cialdai, Monica Monici, Arianna Gazzi, Jeremiah Marcellino, Yarjan Abdul Samad, Lucia Gemma Delogu, Andrea C Ferrari, Carlo Saverio Iorio
{"title":"Hydrogel mechanical properties in altered gravity.","authors":"Vanja Mišković, Immacolata Greco, Christophe Minetti, Francesca Cialdai, Monica Monici, Arianna Gazzi, Jeremiah Marcellino, Yarjan Abdul Samad, Lucia Gemma Delogu, Andrea C Ferrari, Carlo Saverio Iorio","doi":"10.1038/s41526-024-00388-2","DOIUrl":"10.1038/s41526-024-00388-2","url":null,"abstract":"<p><p>Exposure to altered gravity influences cellular behaviour in cell cultures. Hydrogels are amongst the most common materials used to produce tissue-engineering scaffolds, and their mechanical properties play a crucial role in cell-matrix interaction. However, little is known about the influence of altered gravity on hydrogel properties. Here we study the mechanical properties of Poly (ethylene glycol) diacrylate (PEGDA) and PEGDA incorporated with graphene oxide (GO) by performing tensile tests in micro and hypergravity during a Parabolic flight campaign, and by comparing them to the same tests performed in Earth gravity. We show that gravity levels do not result in a statistically significant difference in Young's modulus.</p>","PeriodicalId":54263,"journal":{"name":"npj Microgravity","volume":"10 1","pages":"83"},"PeriodicalIF":4.4,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11310329/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141908311","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}