npj Microgravity最新文献

筛选
英文 中文
Flight test results for microgravity active vibration isolation system on-board Chinese Space Station. 中国空间站微重力主动隔振系统的飞行测试结果。
IF 4.4 1区 物理与天体物理
npj Microgravity Pub Date : 2024-02-19 DOI: 10.1038/s41526-024-00359-7
Wei Liu, Yang Gao, Long Zhang, Tianji Zou, Mengxi Yu, Tuo Zheng
{"title":"Flight test results for microgravity active vibration isolation system on-board Chinese Space Station.","authors":"Wei Liu, Yang Gao, Long Zhang, Tianji Zou, Mengxi Yu, Tuo Zheng","doi":"10.1038/s41526-024-00359-7","DOIUrl":"10.1038/s41526-024-00359-7","url":null,"abstract":"<p><p>The Fluid Physics Research Rack (FPR) is a research platform employed on-board the Chinese Space Station for conducting microgravity fluid physics experiments. The research platform includes the Microgravity Active Vibration Isolation System (MAVIS) for isolating the FPR from disturbances arising from the space station itself. The MAVIS is a structural platform consisting of a stator and floater that are monitored and controlled with non-contact electromagnetic actuators, high-precision accelerometers, and displacement transducers. The stator is fixed to the FPR, while the floater serves as a vibration isolation platform supporting payloads, and is connected with the stator only with umbilicals that mainly comprise power and data cables. The controller was designed with a correction for the umbilical stiffness to minimize the effect of the umbilicals on the vibration isolation performance of the MAVIS. In-orbit test results of the FPR demonstrate that the MAVIS was able to achieve a microgravity level of 1-30 μg<sub>0</sub> (where g<sub>0</sub> = 9.80665 m ∙ s<sup>-2</sup>) in the frequency range of 0.01-125 Hz under the microgravity mode, and disturbances with a frequency greater than 2 Hz are attenuated by more than 10-fold. Under the vibration excitation mode, the MAVIS generated a minimum vibration acceleration of 0.4091 μg<sub>0</sub> at a frequency of 0.00995 Hz and a maximum acceleration of 6253 μg<sub>0</sub> at a frequency of 9.999 Hz. Therefore, the MAVIS provides a highly stable environment for conducting microgravity experiments, and promotes the development of microgravity fluid physics.</p>","PeriodicalId":54263,"journal":{"name":"npj Microgravity","volume":"10 1","pages":"19"},"PeriodicalIF":4.4,"publicationDate":"2024-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11372040/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139906923","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Simulated microgravity attenuates myogenesis and contractile function of 3D engineered skeletal muscle tissues. 模拟微重力削弱了三维工程骨骼肌组织的肌生成和收缩功能。
IF 5.1 1区 物理与天体物理
npj Microgravity Pub Date : 2024-02-16 DOI: 10.1038/s41526-024-00353-z
Zhanping Ren, Eun Hyun Ahn, Minjae Do, Devin B Mair, Amir Monemianesfahani, Peter H U Lee, Deok-Ho Kim
{"title":"Simulated microgravity attenuates myogenesis and contractile function of 3D engineered skeletal muscle tissues.","authors":"Zhanping Ren, Eun Hyun Ahn, Minjae Do, Devin B Mair, Amir Monemianesfahani, Peter H U Lee, Deok-Ho Kim","doi":"10.1038/s41526-024-00353-z","DOIUrl":"10.1038/s41526-024-00353-z","url":null,"abstract":"<p><p>While the effects of microgravity on inducing skeletal muscle atrophy have been extensively studied, the impacts of microgravity on myogenesis and its mechanisms remain unclear. In this study, we developed a microphysiological system of engineered muscle tissue (EMT) fabricated using a collagen / Matrigel composite hydrogel and murine skeletal myoblasts. This 3D EMT model allows non-invasive quantitative assessment of contractile function. After applying a 7-day differentiation protocol to induce myotube formation, the EMTs clearly exhibited sarcomerogenesis, myofilament formation, and synchronous twitch and tetanic contractions with electrical stimuli. Using this 3D EMT system, we investigated the effects of simulated microgravity at 10<sup>-3 </sup>G on myogenesis and contractile function utilizing a random positioning machine. EMTs cultured for 5 days in simulated microgravity exhibited significantly reduced contractile forces, myofiber size, and differential expression of muscle contractile, myogenesis regulatory, and mitochondrial biogenesis-related proteins. These results indicate simulated microgravity attenuates myogenesis, resulting in impaired muscle function.</p>","PeriodicalId":54263,"journal":{"name":"npj Microgravity","volume":"10 1","pages":"18"},"PeriodicalIF":5.1,"publicationDate":"2024-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10873406/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139747768","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Author Correction: Systematic review of the use of ultrasound for venous assessment and venous thrombosis screening in spaceflight. 作者更正:关于在太空飞行中使用超声波进行静脉评估和静脉血栓筛查的系统综述。
IF 5.1 1区 物理与天体物理
npj Microgravity Pub Date : 2024-02-16 DOI: 10.1038/s41526-024-00362-y
Antoine Elias, Tobias Weber, David A Green, Katie M Harris, Jonathan M Laws, Danielle K Greaves, David S Kim, Lucia Mazzolai-Duchosal, Lara Roberts, Lonnie G Petersen, Ulrich Limper, Andrej Bergauer, Michael Elias, Andrew Winnard, Nandu Goswami
{"title":"Author Correction: Systematic review of the use of ultrasound for venous assessment and venous thrombosis screening in spaceflight.","authors":"Antoine Elias, Tobias Weber, David A Green, Katie M Harris, Jonathan M Laws, Danielle K Greaves, David S Kim, Lucia Mazzolai-Duchosal, Lara Roberts, Lonnie G Petersen, Ulrich Limper, Andrej Bergauer, Michael Elias, Andrew Winnard, Nandu Goswami","doi":"10.1038/s41526-024-00362-y","DOIUrl":"10.1038/s41526-024-00362-y","url":null,"abstract":"","PeriodicalId":54263,"journal":{"name":"npj Microgravity","volume":"10 1","pages":"17"},"PeriodicalIF":5.1,"publicationDate":"2024-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10873333/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139747767","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
How are cell and tissue structure and function influenced by gravity and what are the gravity perception mechanisms? 细胞和组织的结构与功能如何受重力影响,重力感知机制是什么?
IF 5.1 1区 物理与天体物理
npj Microgravity Pub Date : 2024-02-10 DOI: 10.1038/s41526-024-00357-9
Trent Davis, Kevin Tabury, Shouan Zhu, Debora Angeloni, Sarah Baatout, Alexandra Benchoua, Juergen Bereiter-Hahn, Daniele Bottai, Judith-Irina Buchheim, Marco Calvaruso, Eugénie Carnero-Diaz, Sara Castiglioni, Duccio Cavalieri, Gabriele Ceccarelli, Alexander Choukér, Francesca Cialdai, Gianni Ciofani, Giuseppe Coppola, Gabriella Cusella, Andrea Degl'Innocenti, Jean-Francois Desaphy, Jean-Pol Frippiat, Michael Gelinsky, Giada Genchi, Maria Grano, Daniela Grimm, Alain Guignandon, Christiane Hahn, Jason Hatton, Raúl Herranz, Christine E Hellweg, Carlo Saverio Iorio, Thodoris Karapantsios, Jack J W A van Loon, Matteo Lulli, Jeanette Maier, Jos Malda, Emina Mamaca, Lucia Morbidelli, Angelique van Ombergen, Andreas Osterman, Aleksandr Ovsianikov, Francesco Pampaloni, Elizabeth Pavezlorie, Veronica Pereda-Campos, Cyrille Przybyla, Christopher Puhl, Petra Rettberg, Angela Maria Rizzo, Kate Robson-Brown, Leonardo Rossi, Giorgio Russo, Alessandra Salvetti, Daniela Santucci, Matthias Sperl, Sara Tavella, Christiane Thielemann, Ronnie Willaert, Nathaniel Szewczyk, Monica Monici
{"title":"How are cell and tissue structure and function influenced by gravity and what are the gravity perception mechanisms?","authors":"Trent Davis, Kevin Tabury, Shouan Zhu, Debora Angeloni, Sarah Baatout, Alexandra Benchoua, Juergen Bereiter-Hahn, Daniele Bottai, Judith-Irina Buchheim, Marco Calvaruso, Eugénie Carnero-Diaz, Sara Castiglioni, Duccio Cavalieri, Gabriele Ceccarelli, Alexander Choukér, Francesca Cialdai, Gianni Ciofani, Giuseppe Coppola, Gabriella Cusella, Andrea Degl'Innocenti, Jean-Francois Desaphy, Jean-Pol Frippiat, Michael Gelinsky, Giada Genchi, Maria Grano, Daniela Grimm, Alain Guignandon, Christiane Hahn, Jason Hatton, Raúl Herranz, Christine E Hellweg, Carlo Saverio Iorio, Thodoris Karapantsios, Jack J W A van Loon, Matteo Lulli, Jeanette Maier, Jos Malda, Emina Mamaca, Lucia Morbidelli, Angelique van Ombergen, Andreas Osterman, Aleksandr Ovsianikov, Francesco Pampaloni, Elizabeth Pavezlorie, Veronica Pereda-Campos, Cyrille Przybyla, Christopher Puhl, Petra Rettberg, Angela Maria Rizzo, Kate Robson-Brown, Leonardo Rossi, Giorgio Russo, Alessandra Salvetti, Daniela Santucci, Matthias Sperl, Sara Tavella, Christiane Thielemann, Ronnie Willaert, Nathaniel Szewczyk, Monica Monici","doi":"10.1038/s41526-024-00357-9","DOIUrl":"10.1038/s41526-024-00357-9","url":null,"abstract":"<p><p>Progress in mechanobiology allowed us to better understand the important role of mechanical forces in the regulation of biological processes. Space research in the field of life sciences clearly showed that gravity plays a crucial role in biological processes. The space environment offers the unique opportunity to carry out experiments without gravity, helping us not only to understand the effects of gravitational alterations on biological systems but also the mechanisms underlying mechanoperception and cell/tissue response to mechanical and gravitational stresses. Despite the progress made so far, for future space exploration programs it is necessary to increase our knowledge on the mechanotransduction processes as well as on the molecular mechanisms underlying microgravity-induced cell and tissue alterations. This white paper reports the suggestions and recommendations of the SciSpacE Science Community for the elaboration of the section of the European Space Agency roadmap \"Biology in Space and Analogue Environments\" focusing on \"How are cells and tissues influenced by gravity and what are the gravity perception mechanisms?\" The knowledge gaps that prevent the Science Community from fully answering this question and the activities proposed to fill them are discussed.</p>","PeriodicalId":54263,"journal":{"name":"npj Microgravity","volume":"10 1","pages":"16"},"PeriodicalIF":5.1,"publicationDate":"2024-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10858953/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139716670","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Influence of microgravity on spontaneous calcium activity of primary hippocampal neurons grown in microfluidic chips. 微重力对在微流控芯片中生长的原发性海马神经元自发钙活动的影响
IF 5.1 1区 物理与天体物理
npj Microgravity Pub Date : 2024-02-06 DOI: 10.1038/s41526-024-00355-x
Pierre-Ewen Lecoq, Chloé Dupuis, Xavier Mousset, Xavier Benoit-Gonnin, Jean-Michel Peyrin, Jean-Luc Aider
{"title":"Influence of microgravity on spontaneous calcium activity of primary hippocampal neurons grown in microfluidic chips.","authors":"Pierre-Ewen Lecoq, Chloé Dupuis, Xavier Mousset, Xavier Benoit-Gonnin, Jean-Michel Peyrin, Jean-Luc Aider","doi":"10.1038/s41526-024-00355-x","DOIUrl":"10.1038/s41526-024-00355-x","url":null,"abstract":"<p><p>The influence of variations of gravity, either hypergravity or microgravity, on the brain of astronauts is a major concern for long journeys in space, to the Moon or to Mars, or simply long-duration missions on the ISS (International Space Station). Monitoring brain activity, before and after ISS missions already demonstrated important and long term effects on the brains of astronauts. In this study, we focus on the influence of gravity variations at the cellular level on primary hippocampal neurons. A dedicated setup has been designed and built to perform live calcium imaging during parabolic flights. During a CNES (Centre National d'Etudes Spatiales) parabolic flight campaign, we were able to observe and monitor the calcium activity of 2D networks of neurons inside microfluidic devices during gravity changes over different parabolas. Our preliminary results clearly indicate a modification of the calcium activity associated to variations of gravity.</p>","PeriodicalId":54263,"journal":{"name":"npj Microgravity","volume":"10 1","pages":"15"},"PeriodicalIF":5.1,"publicationDate":"2024-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10847089/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139698932","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Systematic review of the use of ultrasound for venous assessment and venous thrombosis screening in spaceflight. 关于在太空飞行中使用超声波进行静脉评估和静脉血栓筛查的系统性综述。
IF 5.1 1区 物理与天体物理
npj Microgravity Pub Date : 2024-02-05 DOI: 10.1038/s41526-024-00356-w
Antoine Elias, Tobias Weber, David A Green, Katie M Harris, Jonathan M Laws, Danielle K Greaves, David S Kim, Lucia Mazzolai-Duchosal, Lara Roberts, Lonnie G Petersen, Ulrich Limper, Andrej Bergauer, Michael Elias, Andrew Winnard, Nandu Goswami
{"title":"Systematic review of the use of ultrasound for venous assessment and venous thrombosis screening in spaceflight.","authors":"Antoine Elias, Tobias Weber, David A Green, Katie M Harris, Jonathan M Laws, Danielle K Greaves, David S Kim, Lucia Mazzolai-Duchosal, Lara Roberts, Lonnie G Petersen, Ulrich Limper, Andrej Bergauer, Michael Elias, Andrew Winnard, Nandu Goswami","doi":"10.1038/s41526-024-00356-w","DOIUrl":"10.1038/s41526-024-00356-w","url":null,"abstract":"<p><p>The validity of venous ultrasound (V-US) for the diagnosis of deep vein thrombosis (DVT) during spaceflight is unknown and difficult to establish in diagnostic accuracy and diagnostic management studies in this context. We performed a systematic review of the use of V-US in the upper-body venous system in spaceflight to identify microgravity-related changes and the effect of venous interventions to reverse them, and to assess appropriateness of spaceflight V-US with terrestrial standards. An appropriateness tool was developed following expert panel discussions and review of terrestrial diagnostic studies, including criteria relevant to crew experience, in-flight equipment, assessment sites, ultrasound modalities, and DVT diagnosis. Microgravity-related findings reported as an increase in internal jugular vein (IJV) cross-sectional area and pressure were associated with reduced, stagnant, and retrograde flow. Changes were on average responsive to venous interventions using lower body negative pressure, Bracelets, Valsalva and Mueller manoeuvres, and contralateral IJV compression. In comparison with terrestrial standards, spaceflight V-US did not meet all appropriateness criteria. In DVT studies (n = 3), a single thrombosis was reported and only ultrasound modality criterion met the standards. In the other studies (n = 15), all the criteria were appropriate except crew experience criterion, which was appropriate in only four studies. Future practice and research should account for microgravity-related changes, evaluate individual effect of venous interventions, and adopt Earth-based V-US standards.</p>","PeriodicalId":54263,"journal":{"name":"npj Microgravity","volume":"10 1","pages":"14"},"PeriodicalIF":5.1,"publicationDate":"2024-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10844233/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139693539","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bubble nucleation and growth on microstructured surfaces under microgravity. 微重力条件下微结构表面上的气泡成核和生长。
IF 4.4 1区 物理与天体物理
npj Microgravity Pub Date : 2024-01-30 DOI: 10.1038/s41526-024-00352-0
Qiushi Zhang, Dongchuan Mo, Seunghyun Moon, Jiya Janowitz, Dan Ringle, David Mays, Andrew Diddle, Jason Rexroat, Eungkyu Lee, Tengfei Luo
{"title":"Bubble nucleation and growth on microstructured surfaces under microgravity.","authors":"Qiushi Zhang, Dongchuan Mo, Seunghyun Moon, Jiya Janowitz, Dan Ringle, David Mays, Andrew Diddle, Jason Rexroat, Eungkyu Lee, Tengfei Luo","doi":"10.1038/s41526-024-00352-0","DOIUrl":"10.1038/s41526-024-00352-0","url":null,"abstract":"<p><p>Understanding the dynamics of surface bubble formation and growth on heated surfaces holds significant implications for diverse modern technologies. While such investigations are traditionally confined to terrestrial conditions, the expansion of space exploration and economy necessitates insights into thermal bubble phenomena in microgravity. In this work, we conduct experiments in the International Space Station to study surface bubble nucleation and growth in a microgravity environment and compare the results to those on Earth. Our findings reveal significantly accelerated bubble nucleation and growth rates, outpacing the terrestrial rates by up to ~30 times. Our thermofluidic simulations confirm the role of gravity-induced thermal convective flow, which dissipates heat from the substrate surface and thus influences bubble nucleation. In microgravity, the influence of thermal convective flow diminishes, resulting in localized heat at the substrate surface, which leads to faster temperature rise. This unique condition enables quicker bubble nucleation and growth. Moreover, we highlight the influence of surface microstructure geometries on bubble nucleation. Acting as heat-transfer fins, the geometries of the microstructures influence heat transfer from the substrate to the water. Finer microstructures, which have larger specific surface areas, enhance surface-to-liquid heat transfer and thus reduce the rate of surface temperature rise, leading to slower bubble nucleation. Our experimental and simulation results provide insights into thermal bubble dynamics in microgravity, which may help design thermal management solutions and develop bubble-based sensing technologies.</p>","PeriodicalId":54263,"journal":{"name":"npj Microgravity","volume":"10 1","pages":"13"},"PeriodicalIF":4.4,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10827752/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139643366","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Domains of life sciences in spacefaring: what, where, and how to get involved. 航天生命科学领域:参与的内容、地点和方式。
IF 4.4 1区 物理与天体物理
npj Microgravity Pub Date : 2024-01-29 DOI: 10.1038/s41526-024-00354-y
Aaron J Berliner, Spencer Zezulka, Gwyneth A Hutchinson, Sophia Bertoldo, Charles S Cockell, Adam P Arkin
{"title":"Domains of life sciences in spacefaring: what, where, and how to get involved.","authors":"Aaron J Berliner, Spencer Zezulka, Gwyneth A Hutchinson, Sophia Bertoldo, Charles S Cockell, Adam P Arkin","doi":"10.1038/s41526-024-00354-y","DOIUrl":"10.1038/s41526-024-00354-y","url":null,"abstract":"","PeriodicalId":54263,"journal":{"name":"npj Microgravity","volume":"10 1","pages":"12"},"PeriodicalIF":4.4,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10825151/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139577079","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unlocking the potential: analyzing 3D microstructure of small-scale cement samples from space using deep learning. 挖掘潜力:利用深度学习从太空分析小规模水泥样品的三维微观结构。
IF 4.4 1区 物理与天体物理
npj Microgravity Pub Date : 2024-01-25 DOI: 10.1038/s41526-024-00349-9
Vishnu Saseendran, Namiko Yamamoto, Peter J Collins, Aleksandra Radlińska, Sara Mueller, Enrique M Jackson
{"title":"Unlocking the potential: analyzing 3D microstructure of small-scale cement samples from space using deep learning.","authors":"Vishnu Saseendran, Namiko Yamamoto, Peter J Collins, Aleksandra Radlińska, Sara Mueller, Enrique M Jackson","doi":"10.1038/s41526-024-00349-9","DOIUrl":"10.1038/s41526-024-00349-9","url":null,"abstract":"<p><p>Due to the prohibitive cost of transporting raw materials into Space, in-situ materials along with cement-like binders are poised to be employed for extraterrestrial construction. A unique methodology for obtaining microstructural topology of cement samples hydrated in microgravity environment at the International Space Station (ISS) is presented here. Distinctive Scanning Electron Microscopy (SEM) micrographs of hardened tri-calcium silicate (C<sub>3</sub>S) samples were used as exemplars in a deep learning-based microstructure reconstruction framework. The proposed method aids in generation of an ensemble of microstructures that is inherently statistical in nature, by utilizing sparse experimental data such as the C<sub>3</sub>S samples hydrated in microgravity. The hydrated space-returned samples had exhibited higher porosity content (~70 %) with the portlandite phase assuming an elongated plate-like morphology. Qualitative assessment of the volumetric slices from the reconstructed volumes showcased similar visual characteristics to that of the target 2D exemplar. Detailed assessment of the reconstructed volumes was carried out using statistical descriptors, and was further compared against micro-CT virtual data. The reconstructed volumes captured the unique microstructural morphology of the hardened C<sub>3</sub>S samples of both space-returned and ground-based samples, and can be directly employed as Representative Volume Element (RVE) to characterize mechanical/transport properties.</p>","PeriodicalId":54263,"journal":{"name":"npj Microgravity","volume":"10 1","pages":"11"},"PeriodicalIF":4.4,"publicationDate":"2024-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11381549/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139565379","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The effect of space travel on human reproductive health: a systematic review. 太空旅行对人类生殖健康的影响:系统回顾。
IF 5.1 1区 物理与天体物理
npj Microgravity Pub Date : 2024-01-18 DOI: 10.1038/s41526-024-00351-1
Marta Gimunová, Ana Carolina Paludo, Martina Bernaciková, Julie Bienertova-Vasku
{"title":"The effect of space travel on human reproductive health: a systematic review.","authors":"Marta Gimunová, Ana Carolina Paludo, Martina Bernaciková, Julie Bienertova-Vasku","doi":"10.1038/s41526-024-00351-1","DOIUrl":"10.1038/s41526-024-00351-1","url":null,"abstract":"<p><p>With increasing possibilities of multi-year missions in deep space, colonizing other planets, and space tourism, it is important to investigate the effects of space travel on human reproduction. This study aimed to systematically review and summarize the results of available literature on space travel, microgravity, and space radiation, or Earth-based spaceflight analogues impact on female and male reproductive functions in humans. This systematic review was performed according to Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines and Space Biomedicine Systematic Review methods. The search was performed using three databases: PubMed, Web of Science, and Medline Complete. During the database search, 364 studies were identified. After the study selection process, 16 studies were included in the review. Five studies included female participants, and the findings show an increased risk of thromboembolism in combined oral contraceptive users, decreased decidualization, functional insufficiency of corpus luteum, and decreased progesterone and LH levels related to space travel or its simulation. Male participants were included in 13 studies. In males, reproductive health considerations focused on the decrease in testosterone and sex hormone-binding globulin levels, the ratio of male offspring, sperm motility, sperm vitality, and the increase in sperm DNA fragmentation related to space travel or its simulation. Results of this systematic review highlight the need to focus more on the astronaut's reproductive health in future research, as only 16 studies were found during the literature search, and many more research questions related to reproductive health in astronauts still need to be answered.</p>","PeriodicalId":54263,"journal":{"name":"npj Microgravity","volume":"10 1","pages":"10"},"PeriodicalIF":5.1,"publicationDate":"2024-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10796912/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139491953","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信