Manju Perumbil, Matthew J Blacker, Stuart S Szigeti, Simon A Haine
{"title":"Theoretical investigation of an atomic Fabry Perot interferometer based acceleration sensor for microgravity environments.","authors":"Manju Perumbil, Matthew J Blacker, Stuart S Szigeti, Simon A Haine","doi":"10.1038/s41526-025-00499-4","DOIUrl":null,"url":null,"abstract":"<p><p>We investigate the use of an atomic Fabry-Perot interferometer (FPI) with a pulsed non-interacting Bose-Einstein condensate (BEC) source as a space-based acceleration sensor. We derive an analytic approximation for the device's transmission under a uniform acceleration, which we use to compute the device's attainable acceleration sensitivity using the classical Fisher information. In the ideal case of a high-finesse FPI and an infinitely narrow momentum width atomic source, we find that when the device length is limited, the atomic FPI can achieve greater acceleration sensitivity than a Mach-Zender (MZ) interferometer of equivalent device length. Under the more realistic case of a finite momentum width source, we identify the ideal cavity length for the best sensitivity. Although the MZ interferometer now offers enhanced sensitivity within currently achievable parameter regimes, our analysis demonstrates that the atomic FPI holds potential as a promising future alternative if narrow momentum width atomic sources can be engineered.</p>","PeriodicalId":54263,"journal":{"name":"npj Microgravity","volume":"11 1","pages":"37"},"PeriodicalIF":4.4000,"publicationDate":"2025-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12234927/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Microgravity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s41526-025-00499-4","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
We investigate the use of an atomic Fabry-Perot interferometer (FPI) with a pulsed non-interacting Bose-Einstein condensate (BEC) source as a space-based acceleration sensor. We derive an analytic approximation for the device's transmission under a uniform acceleration, which we use to compute the device's attainable acceleration sensitivity using the classical Fisher information. In the ideal case of a high-finesse FPI and an infinitely narrow momentum width atomic source, we find that when the device length is limited, the atomic FPI can achieve greater acceleration sensitivity than a Mach-Zender (MZ) interferometer of equivalent device length. Under the more realistic case of a finite momentum width source, we identify the ideal cavity length for the best sensitivity. Although the MZ interferometer now offers enhanced sensitivity within currently achievable parameter regimes, our analysis demonstrates that the atomic FPI holds potential as a promising future alternative if narrow momentum width atomic sources can be engineered.
npj MicrogravityPhysics and Astronomy-Physics and Astronomy (miscellaneous)
CiteScore
7.30
自引率
7.80%
发文量
50
审稿时长
9 weeks
期刊介绍:
A new open access, online-only, multidisciplinary research journal, npj Microgravity is dedicated to publishing the most important scientific advances in the life sciences, physical sciences, and engineering fields that are facilitated by spaceflight and analogue platforms.