南极隔离期间短暂的灰质下降:睡眠、运动和认知的作用。

IF 4.4 1区 物理与天体物理 Q1 MULTIDISCIPLINARY SCIENCES
David Roalf, Mathias Basner, Joanne C Beer, Russell T Shinohara, Kosha Ruparel, Tyler M Moore, David F Dinges, Alexander C Stahn, Jad Nasrini, Emanuel Hermosillo, Adrian J Ecker, Karthik Prabhakaran, Mustafa M Almuqbel, Michael G Smith, Christopher W Jones, Bernd Johannes, Darius A Gerlach, Beth Healey, Floris P van den Berg, Hanns-Christian Gunga, Tracy R Melzer, Bruce V Taylor, Ruben C Gur
{"title":"南极隔离期间短暂的灰质下降:睡眠、运动和认知的作用。","authors":"David Roalf, Mathias Basner, Joanne C Beer, Russell T Shinohara, Kosha Ruparel, Tyler M Moore, David F Dinges, Alexander C Stahn, Jad Nasrini, Emanuel Hermosillo, Adrian J Ecker, Karthik Prabhakaran, Mustafa M Almuqbel, Michael G Smith, Christopher W Jones, Bernd Johannes, Darius A Gerlach, Beth Healey, Floris P van den Berg, Hanns-Christian Gunga, Tracy R Melzer, Bruce V Taylor, Ruben C Gur","doi":"10.1038/s41526-025-00497-6","DOIUrl":null,"url":null,"abstract":"<p><p>Astronauts face significant stress in space, and understanding its neurobiological basis is key to assessing risk and resilience. Analogue environments, like the Antarctic Concordia Station, replicate isolated, confined, and extreme (ICE) conditions. This study assessed brain structure changes in 25 crewmembers who spent 12 months at Concordia, with MRI scans conducted before, immediately after, and five months post-mission. The study included 25 controls scanned over a similar interval and 4 \"flying phantom\" individuals who were scanned at all sites. Gray matter in the temporal and parietal lobes, hippocampus, pallidum, and thalamus as well as global white matter decreased during the mission in crewmembers, with all but the thalamus returning to baseline after five months. Brain ventricle volume increased, and better sleep correlated with less brain volume loss, highlighting its potentially protective role. These findings emphasize the importance of understanding mechanisms driving brain changes, particularly with growing interest in extended space missions in ICE environments.</p>","PeriodicalId":54263,"journal":{"name":"npj Microgravity","volume":"11 1","pages":"39"},"PeriodicalIF":4.4000,"publicationDate":"2025-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12254294/pdf/","citationCount":"0","resultStr":"{\"title\":\"Transient gray matter decline during antarctic isolation: Roles of sleep, exercise, and cognition.\",\"authors\":\"David Roalf, Mathias Basner, Joanne C Beer, Russell T Shinohara, Kosha Ruparel, Tyler M Moore, David F Dinges, Alexander C Stahn, Jad Nasrini, Emanuel Hermosillo, Adrian J Ecker, Karthik Prabhakaran, Mustafa M Almuqbel, Michael G Smith, Christopher W Jones, Bernd Johannes, Darius A Gerlach, Beth Healey, Floris P van den Berg, Hanns-Christian Gunga, Tracy R Melzer, Bruce V Taylor, Ruben C Gur\",\"doi\":\"10.1038/s41526-025-00497-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Astronauts face significant stress in space, and understanding its neurobiological basis is key to assessing risk and resilience. Analogue environments, like the Antarctic Concordia Station, replicate isolated, confined, and extreme (ICE) conditions. This study assessed brain structure changes in 25 crewmembers who spent 12 months at Concordia, with MRI scans conducted before, immediately after, and five months post-mission. The study included 25 controls scanned over a similar interval and 4 \\\"flying phantom\\\" individuals who were scanned at all sites. Gray matter in the temporal and parietal lobes, hippocampus, pallidum, and thalamus as well as global white matter decreased during the mission in crewmembers, with all but the thalamus returning to baseline after five months. Brain ventricle volume increased, and better sleep correlated with less brain volume loss, highlighting its potentially protective role. These findings emphasize the importance of understanding mechanisms driving brain changes, particularly with growing interest in extended space missions in ICE environments.</p>\",\"PeriodicalId\":54263,\"journal\":{\"name\":\"npj Microgravity\",\"volume\":\"11 1\",\"pages\":\"39\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12254294/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Microgravity\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1038/s41526-025-00497-6\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Microgravity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s41526-025-00497-6","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

宇航员在太空中面临着巨大的压力,了解其神经生物学基础是评估风险和恢复能力的关键。模拟环境,如南极康科迪亚站,复制孤立,受限和极端(ICE)条件。这项研究评估了在康科迪亚呆了12个月的25名机组人员的大脑结构变化,并在任务前、任务后和任务后5个月进行了核磁共振扫描。该研究包括25名对照者,在相似的时间间隔内进行扫描,以及4名在所有地点进行扫描的“飞行幻影”个体。在执行任务期间,宇航员的颞叶和顶叶、海马体、苍白体和丘脑中的灰质以及全球白质都减少了,五个月后,除了丘脑之外,所有人的灰质都恢复到基线水平。脑室容量增加,更好的睡眠与更少的脑容量损失相关,突出了其潜在的保护作用。这些发现强调了理解驱动大脑变化机制的重要性,特别是在ICE环境中扩展太空任务的兴趣日益浓厚的情况下。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Transient gray matter decline during antarctic isolation: Roles of sleep, exercise, and cognition.

Astronauts face significant stress in space, and understanding its neurobiological basis is key to assessing risk and resilience. Analogue environments, like the Antarctic Concordia Station, replicate isolated, confined, and extreme (ICE) conditions. This study assessed brain structure changes in 25 crewmembers who spent 12 months at Concordia, with MRI scans conducted before, immediately after, and five months post-mission. The study included 25 controls scanned over a similar interval and 4 "flying phantom" individuals who were scanned at all sites. Gray matter in the temporal and parietal lobes, hippocampus, pallidum, and thalamus as well as global white matter decreased during the mission in crewmembers, with all but the thalamus returning to baseline after five months. Brain ventricle volume increased, and better sleep correlated with less brain volume loss, highlighting its potentially protective role. These findings emphasize the importance of understanding mechanisms driving brain changes, particularly with growing interest in extended space missions in ICE environments.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
npj Microgravity
npj Microgravity Physics and Astronomy-Physics and Astronomy (miscellaneous)
CiteScore
7.30
自引率
7.80%
发文量
50
审稿时长
9 weeks
期刊介绍: A new open access, online-only, multidisciplinary research journal, npj Microgravity is dedicated to publishing the most important scientific advances in the life sciences, physical sciences, and engineering fields that are facilitated by spaceflight and analogue platforms.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信