{"title":"Dry immersion rapidly disturbs iron metabolism in men and women: results from the VIVALDI studies.","authors":"Mathieu Horeau, Nastassia Navasiolava, Angelique Van Ombergen, Marc-Antoine Custaud, Adrien Robin, Martine Ropert, Inês Antunes, Marie-Pierre Bareille, Rebecca Billette De Villemeur, Guillemette Gauquelin-Koch, Frédéric Derbré, Olivier Loréal","doi":"10.1038/s41526-024-00399-z","DOIUrl":"10.1038/s41526-024-00399-z","url":null,"abstract":"<p><p>Iron is essential for cell respiration, muscle metabolism, and oxygen transport. Recent research has shown that simulated microgravity rapidly affects iron metabolism in men. However, its impact on women remains unclear. This study aims to compare iron metabolism alterations in both sexes exposed to 5 days of dry immersion. Our findings demonstrate that women, similarly to men, experience increased systemic iron availability and elevated serum hepcidin levels, indicative of iron misdistribution after short-term exposure to simulated microgravity.</p>","PeriodicalId":54263,"journal":{"name":"npj Microgravity","volume":"10 1","pages":"68"},"PeriodicalIF":5.1,"publicationDate":"2024-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11180090/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141328079","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
npj MicrogravityPub Date : 2024-06-11DOI: 10.1038/s41526-023-00293-0
Rocky An, Virginia Katherine Blackwell, Bijan Harandi, Alicia C Gibbons, Olivia Siu, Iris Irby, Amy Rees, Nadjet Cornejal, Kristina M Sattler, Tao Sheng, Nicholas C Syracuse, David Loftus, Sergio R Santa Maria, Egle Cekanaviciute, Sigrid S Reinsch, Hami E Ray, Amber M Paul
{"title":"Influence of the spaceflight environment on macrophage lineages.","authors":"Rocky An, Virginia Katherine Blackwell, Bijan Harandi, Alicia C Gibbons, Olivia Siu, Iris Irby, Amy Rees, Nadjet Cornejal, Kristina M Sattler, Tao Sheng, Nicholas C Syracuse, David Loftus, Sergio R Santa Maria, Egle Cekanaviciute, Sigrid S Reinsch, Hami E Ray, Amber M Paul","doi":"10.1038/s41526-023-00293-0","DOIUrl":"10.1038/s41526-023-00293-0","url":null,"abstract":"<p><p>Spaceflight and terrestrial spaceflight analogs can alter immune phenotypes. Macrophages are important immune cells that bridge the innate and adaptive immune systems and participate in immunoregulatory processes of homeostasis. Furthermore, macrophages are critically involved in initiating immunity, defending against injury and infection, and are also involved in immune resolution and wound healing. Heterogeneous populations of macrophage-type cells reside in many tissues and cause a variety of tissue-specific effects through direct or indirect interactions with other physiological systems, including the nervous and endocrine systems. It is vital to understand how macrophages respond to the unique environment of space to safeguard crew members with appropriate countermeasures for future missions in low Earth orbit and beyond. This review highlights current literature on macrophage responses to spaceflight and spaceflight analogs.</p>","PeriodicalId":54263,"journal":{"name":"npj Microgravity","volume":"10 1","pages":"63"},"PeriodicalIF":5.1,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11166655/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141307411","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
npj MicrogravityPub Date : 2024-06-11DOI: 10.1038/s41526-023-00320-0
Khaled Y Kamal, Mariam Atef Othman, Joo-Hyun Kim, John M Lawler
{"title":"Bioreactor development for skeletal muscle hypertrophy and atrophy by manipulating uniaxial cyclic strain: proof of concept.","authors":"Khaled Y Kamal, Mariam Atef Othman, Joo-Hyun Kim, John M Lawler","doi":"10.1038/s41526-023-00320-0","DOIUrl":"10.1038/s41526-023-00320-0","url":null,"abstract":"<p><p>Skeletal muscles overcome terrestrial, gravitational loading by producing tensile forces that produce movement through joint rotation. Conversely, the microgravity of spaceflight reduces tensile loads in working skeletal muscles, causing an adaptive muscle atrophy. Unfortunately, the design of stable, physiological bioreactors to model skeletal muscle tensile loading during spaceflight experiments remains challenging. Here, we tested a bioreactor that uses initiation and cessation of cyclic, tensile strain to induce hypertrophy and atrophy, respectively, in murine lineage (C2C12) skeletal muscle myotubes. Uniaxial cyclic stretch of myotubes was conducted using a StrexCell® (STB-1400) stepper motor system (0.75 Hz, 12% strain, 60 min day^-1). Myotube groups were assigned as follows: (a) quiescent over 2- or (b) 5-day (no stretch), (c) experienced 2-days (2dHY) or (d) 5-days (5dHY) of cyclic stretch, or (e) 2-days of cyclic stretch followed by a 3-day cessation of stretch (3dAT). Using ß-sarcoglycan as a sarcolemmal marker, mean myotube diameter increased significantly following 2dAT (51%) and 5dAT (94%) vs. matched controls. The hypertrophic, anabolic markers talin and Akt phosphorylation (Thr308) were elevated with 2dHY but not in 3dAT myotubes. Inflammatory, catabolic markers IL-1ß, IL6, and NF-kappaB p65 subunit were significantly higher in the 3dAT group vs. all other groups. The ratio of phosphorylated FoxO3a/total FoxO3a was significantly lower in 3dAT than in the 2dHY group, consistent with elevated catabolic signaling during unloading. In summary, we demonstrated proof-of-concept for a spaceflight research bioreactor, using uniaxial cyclic stretch to produce myotube hypertrophy with increased tensile loading, and myotube atrophy with subsequent cessation of stretch.</p>","PeriodicalId":54263,"journal":{"name":"npj Microgravity","volume":"10 1","pages":"62"},"PeriodicalIF":5.1,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11167039/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141307408","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
npj MicrogravityPub Date : 2024-06-11DOI: 10.1038/s41526-024-00379-3
Hari Ilangovan, Prachi Kothiyal, Katherine A Hoadley, Robin Elgart, Greg Eley, Parastou Eslami
{"title":"Harmonizing heterogeneous transcriptomics datasets for machine learning-based analysis to identify spaceflown murine liver-specific changes.","authors":"Hari Ilangovan, Prachi Kothiyal, Katherine A Hoadley, Robin Elgart, Greg Eley, Parastou Eslami","doi":"10.1038/s41526-024-00379-3","DOIUrl":"10.1038/s41526-024-00379-3","url":null,"abstract":"<p><p>NASA has employed high-throughput molecular assays to identify sub-cellular changes impacting human physiology during spaceflight. Machine learning (ML) methods hold the promise to improve our ability to identify important signals within highly dimensional molecular data. However, the inherent limitation of study subject numbers within a spaceflight mission minimizes the utility of ML approaches. To overcome the sample power limitations, data from multiple spaceflight missions must be aggregated while appropriately addressing intra- and inter-study variabilities. Here we describe an approach to log transform, scale and normalize data from six heterogeneous, mouse liver-derived transcriptomics datasets (n<sub>total </sub>= 137) which enabled ML-methods to classify spaceflown vs. ground control animals (AUC ≥ 0.87) while mitigating the variability from mission-of-origin. Concordance was found between liver-specific biological processes identified from harmonized ML-based analysis and study-by-study classical omics analysis. This work demonstrates the feasibility of applying ML methods on integrated, heterogeneous datasets of small sample size.</p>","PeriodicalId":54263,"journal":{"name":"npj Microgravity","volume":"10 1","pages":"61"},"PeriodicalIF":5.1,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11167036/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141307410","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
npj MicrogravityPub Date : 2024-06-11DOI: 10.1038/s41526-024-00374-8
Robert J Reynolds, Mark Shelhamer, Erik L Antonsen, William R Carpentier
{"title":"Characterizing dehydration in short-term spaceflight using evidence from Project Mercury.","authors":"Robert J Reynolds, Mark Shelhamer, Erik L Antonsen, William R Carpentier","doi":"10.1038/s41526-024-00374-8","DOIUrl":"10.1038/s41526-024-00374-8","url":null,"abstract":"<p><p>Short-term spaceflight is commonly perceived as posing minimal risk to human health and performance. However, despite their duration, short-term flights potentially induce acute physiological changes that create risk to crews. One such change is dehydration (primarily body water loss) due to a heat-stressed environment. Such loss, if severe and prolonged, can lead to decrements in performance as well as increase the risk of more serious medical conditions. Though the general mechanisms of dehydration are broadly understood, the rate and extent of dehydration in short-term spaceflight has not been characterized. Combining data from the six spaceflights of the US Mercury program with a causal diagram illustrating the mechanisms of dehydration, we fit a path model to estimate the causal effects for all pathways in the causal model. Results demonstrate that Mercury astronauts experienced some degree of dehydration across the range of suited time and that the relationship between suited time and dehydration appears to be logarithmic. We discuss causal interpretations of the results and how the results from this and similar analyses can inform countermeasure development for short-term spaceflight.</p>","PeriodicalId":54263,"journal":{"name":"npj Microgravity","volume":"10 1","pages":"64"},"PeriodicalIF":5.1,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11166991/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141307409","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
npj MicrogravityPub Date : 2024-06-08DOI: 10.1038/s41526-024-00404-5
Eric A Hall, Richard S Whittle, Ana Diaz-Artiles
{"title":"Ocular perfusion pressure is not reduced in response to lower body negative pressure.","authors":"Eric A Hall, Richard S Whittle, Ana Diaz-Artiles","doi":"10.1038/s41526-024-00404-5","DOIUrl":"10.1038/s41526-024-00404-5","url":null,"abstract":"<p><p>Lower body negative pressure (LBNP) has been proposed as a countermeasure to mitigate the cephalad fluid shift occurring during spaceflight, which may be associated with the development of Spaceflight Associated Neuro-ocular Syndrome (SANS). This study quantifies the effect of LBNP on intraocular pressure (IOP), mean arterial pressure at eye level (MAP<sub>eye</sub>), and ocular perfusion pressure (OPP). Twenty-four subjects (12 male, 12 female) were subjected to graded LBNP in 0° supine and 15° head-down tilt (HDT) postures from 0 mmHg to -50 mmHg in 10 mmHg increments. IOP decreased significantly with LBNP pressure in 0° supine (by 0.7 ± 0.09 mmHg per 10 mmHg LBNP pressure, p < 0.001) and in 15° HDT (by 1.0 ± 0.095 mmHg per 10 mmHg of LBNP pressure, p < 0.001). MAP<sub>eye</sub> significantly decreased by 0.9 ± 0.4 mmHg per 10 mmHg of LBNP pressure in 0° supine (p = 0.016) but did not significantly change with LBNP in 15° HDT (p = 0.895). OPP did not significantly change with LBNP in 0° supine (p = 0.539) but it significantly increased in 15° HDT at 1.0 ± 0.3 mmHg per 10 mmHg of LBNP pressure (p = 0.010). Sex did not have a significant effect on OPP, MAP<sub>eye</sub>, or IOP in any condition. In 15° HDT, the reduction in IOP during increasing negative pressure, combined with the relatively constant MAP<sub>eye</sub>, led to the increase in OPP. Furthermore, results suggest that LBNP, while effective in reducing IOP, is not effective in reducing OPP across all postures investigated.</p>","PeriodicalId":54263,"journal":{"name":"npj Microgravity","volume":"10 1","pages":"67"},"PeriodicalIF":5.1,"publicationDate":"2024-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11162494/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141293955","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Cold atom microwave clock based on intracavity cooling in China space station.","authors":"Siminda Deng, Wei Ren, Jingfeng Xiang, Jianbo Zhao, Lin Li, Di Zhang, JinYin Wan, Yanling Meng, XiaoJun Jiang, Tang Li, Liang Liu, Desheng Lü","doi":"10.1038/s41526-024-00407-2","DOIUrl":"10.1038/s41526-024-00407-2","url":null,"abstract":"<p><p>Atomic clocks with higher frequency stability and accuracy than traditional space-borne atomic clocks are the cornerstone of long-term autonomous operation of space-time-frequency systems. We proposed a space cold atoms clock based on an intracavity cooling scheme, which captures cold atoms at the center of a microwave cavity and then executes in situ interactions between the cold atoms and microwaves. As a result of the microgravity environment in space, the cold atoms can interact with the microwaves for a longer time, which aids in realizing a high-precision atomic clock in space. This paper presents the overall design, operational characteristics, and reliability test results of the space atomic clock based on the intracavity cooling scheme designed for the operation onboard the China space station. In addition, the engineering prototype performance of the space cold atoms microwave clock is also presented. The ground test results for the clock show a fractional frequency stability of 1.1 × 10<sup>-12</sup> τ<sup>-1/2</sup> reaching 2.5 × 10<sup>-15</sup> at 200,000 s, providing solid technical and data support for its future operation in orbit.</p>","PeriodicalId":54263,"journal":{"name":"npj Microgravity","volume":"10 1","pages":"66"},"PeriodicalIF":5.1,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11156933/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141285371","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
npj MicrogravityPub Date : 2024-06-06DOI: 10.1038/s41526-024-00403-6
J N Chung, Jun Dong, Hao Wang, Bo Han Huang, Jason Hartwig
{"title":"Demonstration of charge-hold-vent (CHV) and no-vent-fill (NVF) in a simulated propellent storage tank during tank-to-tank cryogen transfer in microgravity.","authors":"J N Chung, Jun Dong, Hao Wang, Bo Han Huang, Jason Hartwig","doi":"10.1038/s41526-024-00403-6","DOIUrl":"10.1038/s41526-024-00403-6","url":null,"abstract":"<p><p>The space exploration from a low earth orbit to a high earth orbit, then to Moon, Mars, and possibly asteroids and moons of other planets is one of the biggest challenges for scientists and engineers for the new millennium. The enabling of in-space cryogenic rocket engines and the Lower-Earth-Orbit (LEO) cryogenic fuel depots for these future manned and robotic space exploration missions begins with the technology development of advanced cryogenic thermal-fluid management systems for the propellant transfer line and storage tank system. One of the key thermal-fluid management operations is the chilldown and filling of the propellant storage tank in space. As a result, highly energy efficient, breakthrough concepts for quenching heat transfer to conserve and minimize the cryogen consumption during chilldown have become the focus of engineering research and development, especially for the deep-space mission to Mars. In this paper, we introduce such thermal transport concepts and demonstrate their feasibilities in space for cryogenic propellant storage tank chilldown and filling in a simulated space microgravity condition on board an aircraft flying a parabolic trajectory. In order to maximize the storage tank chilldown thermal efficiency for the least amount of required cryogen consumption, the breakthrough quenching heat transfer concepts developed include the combination of charge-hold-vent (CHV) and no-vent-hold (NVF). The completed flight experiments successfully demonstrated the feasibility of the concepts and discovered that spray cooling combined with hold and vent is more efficient than the pure spray cooling for storage tank chilldown in microgravity. In microgravity, the data shows that the CHV thermal efficiency can reach 39.5%. The CHV efficiency in microgravity is 6.9% lower than that in terrestrial gravity. We also found that pulsing the spray can increase CHV efficiency by 6.1% in microgravity.</p>","PeriodicalId":54263,"journal":{"name":"npj Microgravity","volume":"10 1","pages":"65"},"PeriodicalIF":5.1,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11156976/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141285372","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
npj MicrogravityPub Date : 2024-06-05DOI: 10.1038/s41526-024-00406-3
Marta Murgia, Jörn Rittweger, Carlo Reggiani, Roberto Bottinelli, Matthias Mann, Stefano Schiaffino, Marco V Narici
{"title":"Spaceflight on the ISS changed the skeletal muscle proteome of two astronauts.","authors":"Marta Murgia, Jörn Rittweger, Carlo Reggiani, Roberto Bottinelli, Matthias Mann, Stefano Schiaffino, Marco V Narici","doi":"10.1038/s41526-024-00406-3","DOIUrl":"10.1038/s41526-024-00406-3","url":null,"abstract":"<p><p>Skeletal muscle undergoes atrophy and loss of force during long space missions, when astronauts are persistently exposed to altered gravity and increased ionizing radiation. We previously carried out mass spectrometry-based proteomics from skeletal muscle biopsies of two astronauts, taken before and after a mission on the International Space Station. The experiments were part of an effort to find similarities between spaceflight and bed rest, a ground-based model of unloading, focused on proteins located at the costameres. We here extend the data analysis of the astronaut dataset and show compartment-resolved changes in the mitochondrial proteome, remodeling of the extracellular matrix and of the antioxidant response. The astronauts differed in their level of onboard physical exercise, which correlated with their respective preservation of muscle mass and force at landing in previous analyses. We show that the mitochondrial proteome downregulation during spaceflight, particularly the inner membrane and matrix, was dramatic for both astronauts. The expression of autophagy regulators and reactive oxygen species scavengers, however, showed partially opposite expression trends in the two subjects, possibly correlating with their level of onboard exercise. As mitochondria are primarily affected in many different tissues during spaceflight, we hypothesize that reactive oxygen species (ROS) rather than mechanical unloading per se could be the primary cause of skeletal muscle mitochondrial damage in space. Onboard physical exercise might have a strong direct effect on the prevention of muscle atrophy through mechanotransduction and a subsidiary effect on mitochondrial quality control, possibly through upregulation of autophagy and anti-oxidant responses.</p>","PeriodicalId":54263,"journal":{"name":"npj Microgravity","volume":"10 1","pages":"60"},"PeriodicalIF":5.1,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11153545/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141263209","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
npj MicrogravityPub Date : 2024-06-05DOI: 10.1038/s41526-024-00405-4
Borbála Tölgyesi, Anna Altbäcker, Irén Barkaszi, Tim Stuckenschneider, Leonard Braunsmann, Endre Takács, Bea Ehmann, László Balázs, Vera Abeln
{"title":"Effect of artificial gravity on neurocognitive performance during head-down tilt bedrest.","authors":"Borbála Tölgyesi, Anna Altbäcker, Irén Barkaszi, Tim Stuckenschneider, Leonard Braunsmann, Endre Takács, Bea Ehmann, László Balázs, Vera Abeln","doi":"10.1038/s41526-024-00405-4","DOIUrl":"10.1038/s41526-024-00405-4","url":null,"abstract":"<p><p>This study evaluated the acute and chronic effects of intermittent and continuous Artificial Gravity (AG) on cognitive performance during 60 days of Head-down tilt bedrest (HDTBR), a well-established ground-based spaceflight analogue method. Participants were randomly assigned to three groups: intermittent AG, continuous AG, and HDTBR control group without AG exposure. Task performance and electrophysiological measures of attention and working memory were investigated during Simple and Complex tasks in the Visual and the Auditory modality. Compared to baseline, faster reaction time and better accuracy was present during HDTBR regarding the Complex tasks, however, the practice effect was diminished in the three HDTBR groups compared to an ambulatory control group. Brain potentials showed a modality-specific decrease, as P3a was decreased only in the Auditory, while P3b decreased in the Visual modality. No evidence for acute or chronic AG-related cognitive impairments during HDTBR was found.</p>","PeriodicalId":54263,"journal":{"name":"npj Microgravity","volume":"10 1","pages":"59"},"PeriodicalIF":5.1,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11153507/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141263206","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}