Anne Yau, Maxwell Landolina, Mari Anne Snow, Pinar Mesci, Brandon Williams, James B Hoying, Jana Stoudemire, Rayyanah Barnawi, Peggy Whitson, Rose Hernandez, Derek Duflo, Honglu Wu, Yupeng Chen
{"title":"In space fabrication of Janus base nano matrix for improved assembly and bioactivity.","authors":"Anne Yau, Maxwell Landolina, Mari Anne Snow, Pinar Mesci, Brandon Williams, James B Hoying, Jana Stoudemire, Rayyanah Barnawi, Peggy Whitson, Rose Hernandez, Derek Duflo, Honglu Wu, Yupeng Chen","doi":"10.1038/s41526-025-00482-z","DOIUrl":null,"url":null,"abstract":"<p><p>Nanomaterials have a broad impact on both space and biomedical research but have never been produced in-space for regenerative applications. During the Axiom-2 (Ax-2) mission, our team completed the first-ever low Earth orbit (LEO) manufacturing of Janus base nanomaterials (JBNs) for cartilage tissue regeneration. This fabrication of JBNs in LEO resulted in superior product homogeneity, stability, and loading ability compared to Earth samples, demonstrating the benefits of manufacturing in microgravity.</p>","PeriodicalId":54263,"journal":{"name":"npj Microgravity","volume":"11 1","pages":"32"},"PeriodicalIF":4.1000,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12222728/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Microgravity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s41526-025-00482-z","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Nanomaterials have a broad impact on both space and biomedical research but have never been produced in-space for regenerative applications. During the Axiom-2 (Ax-2) mission, our team completed the first-ever low Earth orbit (LEO) manufacturing of Janus base nanomaterials (JBNs) for cartilage tissue regeneration. This fabrication of JBNs in LEO resulted in superior product homogeneity, stability, and loading ability compared to Earth samples, demonstrating the benefits of manufacturing in microgravity.
npj MicrogravityPhysics and Astronomy-Physics and Astronomy (miscellaneous)
CiteScore
7.30
自引率
7.80%
发文量
50
审稿时长
9 weeks
期刊介绍:
A new open access, online-only, multidisciplinary research journal, npj Microgravity is dedicated to publishing the most important scientific advances in the life sciences, physical sciences, and engineering fields that are facilitated by spaceflight and analogue platforms.