CeO2纳米材料调节小麦内生菌和根际细菌在模拟微重力胁迫下的抗性。

IF 4.1 1区 物理与天体物理 Q1 MULTIDISCIPLINARY SCIENCES
Dengbo Chen, Jingjing Cui, Liting Zhao, Pan Xin, Shaocheng Yan, A G Degermendzhi, Yuming Fu, Hong Liu
{"title":"CeO2纳米材料调节小麦内生菌和根际细菌在模拟微重力胁迫下的抗性。","authors":"Dengbo Chen, Jingjing Cui, Liting Zhao, Pan Xin, Shaocheng Yan, A G Degermendzhi, Yuming Fu, Hong Liu","doi":"10.1038/s41526-025-00481-0","DOIUrl":null,"url":null,"abstract":"<p><p>Certain nanomaterials, including cerium dioxide nanoparticle (CeO<sub>2</sub> NP), have shown potential in modulating plant microbial communities to alleviate stressors like simulated microgravity. Using 16S rRNA amplicon sequencing, we investigated microbial variations in wheat rhizosphere and endosphere under simulated microgravity. With a 500 mg/L concentration, CeO<sub>2</sub> NP enhanced wheat growth, particularly enhancing roots, increasing stem diameter, root-to-shoot ratio, and improving endophytic microbial diversity with less impact on the rhizospheric community. CeO₂ NP mitigated microgravity impacts by increasing Bacteroidetes, reducing Firmicutes decline, and stabilizing microbial networks. It also enhanced carbohydrate and nucleotide metabolism pathways in rhizospheric microbiota and nucleotide metabolism in endophytic microbiota. Together with wheat metabolomics, these results underscore how CeO₂ NP help wheat adapt to simulated microgravity by aligning microbial activity for an integrated adaptive response. These findings highlight CeO₂ NP's role in mitigating simulated microgravity effects on plants via microbial modulation, offering insights for future applications in space agriculture.</p>","PeriodicalId":54263,"journal":{"name":"npj Microgravity","volume":"11 1","pages":"27"},"PeriodicalIF":4.1000,"publicationDate":"2025-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12185730/pdf/","citationCount":"0","resultStr":"{\"title\":\"CeO<sub>2</sub> nanomaterial regulates wheat endophytic and rhizospheric bacteria to enhance resistance under simulated microgravity stress.\",\"authors\":\"Dengbo Chen, Jingjing Cui, Liting Zhao, Pan Xin, Shaocheng Yan, A G Degermendzhi, Yuming Fu, Hong Liu\",\"doi\":\"10.1038/s41526-025-00481-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Certain nanomaterials, including cerium dioxide nanoparticle (CeO<sub>2</sub> NP), have shown potential in modulating plant microbial communities to alleviate stressors like simulated microgravity. Using 16S rRNA amplicon sequencing, we investigated microbial variations in wheat rhizosphere and endosphere under simulated microgravity. With a 500 mg/L concentration, CeO<sub>2</sub> NP enhanced wheat growth, particularly enhancing roots, increasing stem diameter, root-to-shoot ratio, and improving endophytic microbial diversity with less impact on the rhizospheric community. CeO₂ NP mitigated microgravity impacts by increasing Bacteroidetes, reducing Firmicutes decline, and stabilizing microbial networks. It also enhanced carbohydrate and nucleotide metabolism pathways in rhizospheric microbiota and nucleotide metabolism in endophytic microbiota. Together with wheat metabolomics, these results underscore how CeO₂ NP help wheat adapt to simulated microgravity by aligning microbial activity for an integrated adaptive response. These findings highlight CeO₂ NP's role in mitigating simulated microgravity effects on plants via microbial modulation, offering insights for future applications in space agriculture.</p>\",\"PeriodicalId\":54263,\"journal\":{\"name\":\"npj Microgravity\",\"volume\":\"11 1\",\"pages\":\"27\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2025-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12185730/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Microgravity\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1038/s41526-025-00481-0\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Microgravity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s41526-025-00481-0","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

某些纳米材料,包括二氧化铈纳米颗粒(CeO2 NP),已经显示出在调节植物微生物群落以减轻模拟微重力等压力源方面的潜力。利用16S rRNA扩增子测序技术,研究了模拟微重力条件下小麦根际和内圈微生物的变化。500 mg/L浓度的CeO2 NP促进小麦生长,特别是促进根系生长,增加茎粗、根冠比,提高内生微生物多样性,对根际群落影响较小。CeO₂NP通过增加拟杆菌门、减少厚壁菌门的下降和稳定微生物网络来减轻微重力的影响。它还增强了根际微生物群的碳水化合物和核苷酸代谢途径以及内生微生物群的核苷酸代谢。与小麦代谢组学一起,这些结果强调了CeO₂NP如何通过调整微生物活性以进行综合适应反应来帮助小麦适应模拟微重力。这些发现强调了CeO₂NP在通过微生物调节减轻模拟微重力对植物的影响方面的作用,为未来在太空农业中的应用提供了见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CeO2 nanomaterial regulates wheat endophytic and rhizospheric bacteria to enhance resistance under simulated microgravity stress.

Certain nanomaterials, including cerium dioxide nanoparticle (CeO2 NP), have shown potential in modulating plant microbial communities to alleviate stressors like simulated microgravity. Using 16S rRNA amplicon sequencing, we investigated microbial variations in wheat rhizosphere and endosphere under simulated microgravity. With a 500 mg/L concentration, CeO2 NP enhanced wheat growth, particularly enhancing roots, increasing stem diameter, root-to-shoot ratio, and improving endophytic microbial diversity with less impact on the rhizospheric community. CeO₂ NP mitigated microgravity impacts by increasing Bacteroidetes, reducing Firmicutes decline, and stabilizing microbial networks. It also enhanced carbohydrate and nucleotide metabolism pathways in rhizospheric microbiota and nucleotide metabolism in endophytic microbiota. Together with wheat metabolomics, these results underscore how CeO₂ NP help wheat adapt to simulated microgravity by aligning microbial activity for an integrated adaptive response. These findings highlight CeO₂ NP's role in mitigating simulated microgravity effects on plants via microbial modulation, offering insights for future applications in space agriculture.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
npj Microgravity
npj Microgravity Physics and Astronomy-Physics and Astronomy (miscellaneous)
CiteScore
7.30
自引率
7.80%
发文量
50
审稿时长
9 weeks
期刊介绍: A new open access, online-only, multidisciplinary research journal, npj Microgravity is dedicated to publishing the most important scientific advances in the life sciences, physical sciences, and engineering fields that are facilitated by spaceflight and analogue platforms.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信