Exploring the potential of a bioassembler for protein crystallization in space.

IF 4.4 1区 物理与天体物理 Q1 MULTIDISCIPLINARY SCIENCES
Christopher MacCarthy, Elizaveta Koudan, Mikhail Shevtsov, Vladislav Parfenov, Stanislav Petrov, Aleksandr Levin, Fedor Senatov, Nina Sykilinda, Sergey Ostrovskiy, Stanislav Pekov, Ivan Gushchin, Igor Popov, Egor Zinovev, Andrey Bogorodskiy, Alexey Mishin, Valentin Ivanovich, Andrey Rogachev, Yusef Khesuani, Valentin Borshchevskiy
{"title":"Exploring the potential of a bioassembler for protein crystallization in space.","authors":"Christopher MacCarthy, Elizaveta Koudan, Mikhail Shevtsov, Vladislav Parfenov, Stanislav Petrov, Aleksandr Levin, Fedor Senatov, Nina Sykilinda, Sergey Ostrovskiy, Stanislav Pekov, Ivan Gushchin, Igor Popov, Egor Zinovev, Andrey Bogorodskiy, Alexey Mishin, Valentin Ivanovich, Andrey Rogachev, Yusef Khesuani, Valentin Borshchevskiy","doi":"10.1038/s41526-025-00477-w","DOIUrl":null,"url":null,"abstract":"<p><p>Protein crystallization holds paramount significance in structural biology, serving as a pivotal technique for unveiling the three-dimensional (3D) architecture of proteins. While microgravity conditions in space offer distinct advantages for high-quality protein crystal growth by mitigating the influences of gravity and convection, the development of reliable techniques for protein crystallization in space with precise control over the crystallization process and its meticulous inspections remains a challenge. In this study, we present an innovative bioassembler-specifically, the 'Organ.Aut'-which we successfully employed to crystallize protein in space. The bioassembler 'Organ.Aut' produced highly ordered crystals diffracted to a true-atomic resolution of ∼1 Å. These data allowed for a detailed examination of atomic structures, enabling thorough structural comparisons with crystals grown on Earth. Our finding suggests that the bioassembler 'Organ.Aut' stands as a promising and viable option for advancing protein crystallization in space.</p>","PeriodicalId":54263,"journal":{"name":"npj Microgravity","volume":"11 1","pages":"25"},"PeriodicalIF":4.4000,"publicationDate":"2025-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12167385/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Microgravity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s41526-025-00477-w","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Protein crystallization holds paramount significance in structural biology, serving as a pivotal technique for unveiling the three-dimensional (3D) architecture of proteins. While microgravity conditions in space offer distinct advantages for high-quality protein crystal growth by mitigating the influences of gravity and convection, the development of reliable techniques for protein crystallization in space with precise control over the crystallization process and its meticulous inspections remains a challenge. In this study, we present an innovative bioassembler-specifically, the 'Organ.Aut'-which we successfully employed to crystallize protein in space. The bioassembler 'Organ.Aut' produced highly ordered crystals diffracted to a true-atomic resolution of ∼1 Å. These data allowed for a detailed examination of atomic structures, enabling thorough structural comparisons with crystals grown on Earth. Our finding suggests that the bioassembler 'Organ.Aut' stands as a promising and viable option for advancing protein crystallization in space.

探索在太空中用于蛋白质结晶的生物组装器的潜力。
蛋白质结晶在结构生物学中具有至关重要的意义,是揭示蛋白质三维结构的关键技术。虽然太空中的微重力条件通过减轻重力和对流的影响为高质量的蛋白质晶体生长提供了明显的优势,但在太空中开发可靠的蛋白质结晶技术,精确控制结晶过程并对其进行细致的检查,仍然是一个挑战。在这项研究中,我们提出了一种创新的生物组装体,特别是“器官”。我们成功地用它在太空中使蛋白质结晶。生物组装器。Aut'产生了高度有序的晶体,衍射到真原子分辨率为~ 1 Å。这些数据允许对原子结构进行详细的检查,从而与地球上生长的晶体进行彻底的结构比较。我们的发现表明,生物组装器官。Aut是在太空中推进蛋白质结晶的一个有前途和可行的选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
npj Microgravity
npj Microgravity Physics and Astronomy-Physics and Astronomy (miscellaneous)
CiteScore
7.30
自引率
7.80%
发文量
50
审稿时长
9 weeks
期刊介绍: A new open access, online-only, multidisciplinary research journal, npj Microgravity is dedicated to publishing the most important scientific advances in the life sciences, physical sciences, and engineering fields that are facilitated by spaceflight and analogue platforms.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信