{"title":"Detection and molecular epidemiology of canine parvovirus and identification of highly pathogenic CPV-2c isolates from Shandong, China.","authors":"Jiahui Li, Baoyu Cheng, Zihe Li, Yanlei Cui, Haiyan Yang, Weiquan Liu, Chuanmei Zhang, Yongle Yu","doi":"10.1007/s11262-024-02125-z","DOIUrl":"https://doi.org/10.1007/s11262-024-02125-z","url":null,"abstract":"<p><p>Canine parvovirus (CPV) is an important pathogen of dogs and wild carnivores. It is a single-stranded DNA virus with a high mutation frequency and antigenic drift. To research the prevalence and genetic variation of CPV in Shandong, 62 samples from diseased dogs were collected and examined by using PCR for parvovirus. Our results showed that the positivity was 62.9% (n = 39), VP2 gene were sequenced and compared with reference strains. For the parvovirus subtype prevalence, 7 strains were CPV-2a (17.9%) and 32 strains were CPV-2c (82.1%). The results of phylogenetic analysis of VP2 gene of the CPVs showed all 39 isolates formed a major clade and were distantly related to the commercial vaccine strains. By comparing amino acid (aa) sequences, this study discovered new mutations not previously reported which may be related to host range and antigenicity. Moreover, one CPV-2c strain (QN-55) was isolated and cultured on F81 cells, and characterized by whole-genome sequencing. The TCID<sub>50</sub> of this strain was 10<sup>-3.2</sup>/0.1 mL and animal tests have shown that the strain is fatal to infected dogs.</p>","PeriodicalId":51212,"journal":{"name":"Virus Genes","volume":" ","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142774601","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Bioinformatic identification of monkeypox virus phylogenetic gene trees that are representative of its whole-genome phylogenetic tree.","authors":"El-Miracle Idorenyin Akpan, Diana Diaz-Cánova, Malachy Ifeanyi Okeke","doi":"10.1007/s11262-024-02110-6","DOIUrl":"10.1007/s11262-024-02110-6","url":null,"abstract":"<p><p>Phylogenetic analysis based on whole-genome sequences is the gold standard for monkeypox virus (MPXV) phylogeny. However, genomic epidemiology capability and capacity are lacking or limited in resource poor countries of sub-Saharan Africa. Therefore, these make real-time genome surveillance of MPXV virtually impossible. We hypothesized that phylogenetic analysis based on single, conserved genes will produce phylogenetic tree topology consistent with MPXV whole-genome phylogeny, thus serving as a reliable proxy to phylogenomic analysis. In this study, we analyzed 62 conserved MPXV genes and showed that Bayesian phylogenetic analysis based on five genes (OPG 066/E4L, OPG068/E6R, OPG079/I3L, OPG145/A18R, and OPG150/A23R) generated phylogenetic trees with 72.2-96.3% topology similarity index to the reference phylogenomic tree topology. Our results showed that phylogenetic analysis of the identified five genes singly or in combination can serve as surrogate for whole-genome phylogenetic analysis, and thus obviates the need for whole-genome sequencing and phylogenomic analysis in regions where genomic epidemiology competence and capacity are lacking or unavailable. This study is relevant to evolution and genome surveillance of MPXV in resource limited countries.</p>","PeriodicalId":51212,"journal":{"name":"Virus Genes","volume":" ","pages":"635-641"},"PeriodicalIF":16.4,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142382318","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Tackling hepatitis B Virus with CRISPR/Cas9: advances, challenges, and delivery strategies.","authors":"Dakshina M Nair, Leela Kakithakara Vajravelu, Jayaprakash Thulukanam, Vishnupriya Paneerselvam, Poornima Baskar Vimala, Rahul Harikumar Lathakumari","doi":"10.1007/s11262-024-02105-3","DOIUrl":"10.1007/s11262-024-02105-3","url":null,"abstract":"<p><p>Hepatitis B virus (HBV) infection remains a significant global health challenge, with chronic HBV leading to severe liver diseases, including cirrhosis and hepatocellular carcinoma. Current treatments often fail to eradicate the virus, highlighting the need for innovative therapeutic strategies. The CRISPR/Cas9 system has emerged as a dynamic tool for precise genome editing and presents a promising approach to targeting and eliminating HBV infection. This review provides a comprehensive overview of the advances, challenges, and delivery strategies associated with CRISPR/Cas9-based therapies for HBV. We begin by elucidating the mechanism of the CRISPR/Cas9 system and then explore HBV pathogenesis, focusing on the role of covalently closed circular DNA (cccDNA) and integrated HBV DNA in maintaining chronic infection. CRISPR/Cas9 can disrupt these key viral reservoirs, which are critical for persistent HBV replication and associated liver damage. The application of CRISPR/Cas9 in HBV treatment faces significant challenges, such as off-target effects, delivery efficiency, and immune responses. These challenges are addressed by examining current approaches to enhance the specificity, safety, and efficacy of CRISPR/Cas9. A future perspective on the development and clinical translation of CRISPR/Cas9 therapies for HBV is provided, emphasizing the requirement for further research to improve delivery methods and ensure durable safety and effectiveness. This review underscores the transformative potential of CRISPR/Cas9 in combating HBV and sets the stage for future breakthroughs in the field.</p>","PeriodicalId":51212,"journal":{"name":"Virus Genes","volume":" ","pages":"592-602"},"PeriodicalIF":1.9,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142082525","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Virus GenesPub Date : 2024-12-01Epub Date: 2024-08-22DOI: 10.1007/s11262-024-02102-6
Bili Wang, Biao Shen, Wenqing Xiang, Hongqiang Shen
{"title":"Advances in the study of LNPs for mRNA delivery and clinical applications.","authors":"Bili Wang, Biao Shen, Wenqing Xiang, Hongqiang Shen","doi":"10.1007/s11262-024-02102-6","DOIUrl":"10.1007/s11262-024-02102-6","url":null,"abstract":"<p><p>Messenger ribonucleic acid (mRNA) was discovered in 1961 as an intermediary for transferring genetic information from DNA to ribosomes for protein synthesis. The COVID-19 pandemic brought worldwide attention to mRNA vaccines. The emergency use authorization of two COVID-19 mRNA vaccines, BNT162b2 and mRNA-1273, were major achievements in the history of vaccine development. Lipid nanoparticles (LNPs), one of the most superior non-viral delivery vectors available, have made many exciting advances in clinical translation as part of the COVID-19 vaccine and therefore has the potential to accelerate the clinical translation of many gene drugs. In addition, due to these small size, biocompatibility and excellent biodegradability, LNPs can efficiently deliver nucleic acids into cells, which is particularly important for current mRNA therapeutic regimens. LNPs are composed cationic or pH-dependent ionizable lipid bilayer, polyethylene glycol (PEG), phospholipids, and cholesterol, represents an advanced system for the delivery of mRNA vaccines. Furthermore, optimization of these four components constituting the LNPs have demonstrated enhanced vaccine efficacy and diminished adverse effects. The incorporation of biodegradable lipids enhance the biocompatibility of LNPs, thereby improving its potential as an efficacious therapeutic approach for a wide range of challenging and intricate diseases, encompassing infectious diseases, liver disorders, cancer, cardiovascular diseases, cerebrovascular conditions, among others. Consequently, this review aims to furnish the scientific community with the most up-to-date information regarding mRNA vaccines and LNP delivery systems.</p>","PeriodicalId":51212,"journal":{"name":"Virus Genes","volume":" ","pages":"577-591"},"PeriodicalIF":1.9,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142019483","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Effect of HDAC9-induced deacetylation of glycolysis-related GAPDH lysine 219 on rotavirus replication in rotavirus-infected Caco-2 cells.","authors":"Lijun Song, Peicheng Zhong, Runyu Yu, Yue Yuan, Yujing Zhou, Yupei Qian, Siyan Yang, Haosen Yi, Zhiyan Yang, Wenchang Zhao","doi":"10.1007/s11262-024-02104-4","DOIUrl":"10.1007/s11262-024-02104-4","url":null,"abstract":"<p><p>Post-translational modifications (PTMs), as epigenetic modifications, are significant in the interaction between virus and its host. However, it is unclear whether rotavirus (RV) causes changes in both the host cell epigenetic protein modification and the regulatory mechanism of viral replication. Here, we analyzed the proteome of Caco-2 cells to determine if acetylation modification occurred within the cells after RV infection. We found that glyceraldehyde-3-phosphate dehydrogenase (GAPDH), a protein involved in glycolysis, was deacetylated at lysine 219 via histone deacetylase 9 (HDAC9) in 50 h after the RV infection. Remarkably, the deacetylation of GAPDH promoted RV replication. Finally, we found that glycolysis was alterable in Caco-2 cells by RV or the deacetylation of GAPDH lysine 219, using the Seahorse XF Glycolysis Stress Test. In conclusion, our results demonstrate for the first time that RV infection promoted deacetylation of GAPDH at lysine 219 in order to increase its own viral replication in Caco-2 cells.</p>","PeriodicalId":51212,"journal":{"name":"Virus Genes","volume":" ","pages":"621-634"},"PeriodicalIF":16.4,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11568057/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142300367","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Porcine epidemic diarrhea virus E protein induces unfolded protein response through activating both PERK and ATF6 rather than IRE1 signaling pathway.","authors":"Liang Zheng, Ying Yang, Mingxin Ma, Qin Hu, Zhijun Wu, Matthew Kay, Xiaoge Yang, Liwei Yin, Fusheng Ding, Hua Zhang","doi":"10.1007/s11262-024-02108-0","DOIUrl":"10.1007/s11262-024-02108-0","url":null,"abstract":"<p><p>Porcine epidemic diarrhea virus (PEDV) small envelope protein (E) plays important roles in virus budding, assembly, and release. Our previous study found that PEDV E protein localizes in the endoplasmic reticulum (ER) to trigger the unfolded protein response (UPR). However, how UPR is directly regulated by PEDV E protein remains elusive. Thus, in this study, we investigated the expression of ER chaperone glucose-regulated protein 78 (GRP78) and activations of the three main UPR signaling pathways to elucidate the underlying mechanisms of UPR triggered by PEDV E protein. The results showed that over-expression of PEDV E protein increased expression of GRP78 and induced stronger phosphorylation of both protein kinase RNA-like ER kinase (PERK) and eukaryotic initiation factor-2α (eIF2α), as well as caused the significant degradation of activating transcription factor 6 (ATF6), in both dose- and time-dependent manners. However, PEDV E protein did not induce UPR through the inositol-requiring enzyme 1 (IRE1) signaling pathway, as revealed by the splicing of XBP1 remaining unaffected and unchanged when PEDV E protein was overexpressed. Taken together, these results demonstrate that PEDV E protein induces UPR through activation of both PERK and ATF6 pathways rather than IRE1 signaling. This study not only provides mechanistic details of UPR induced by the PEDV E protein, but also provides insights into these new biologic functions to help us better understand the interactions between PEDV and host cells.</p>","PeriodicalId":51212,"journal":{"name":"Virus Genes","volume":" ","pages":"652-666"},"PeriodicalIF":1.9,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142300369","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Virus GenesPub Date : 2024-12-01Epub Date: 2024-10-06DOI: 10.1007/s11262-024-02111-5
Leyuan Zhu, Lixia Xu, Wangtai Luo, Qingying Lai, Zhenqiu Huang, Meijin Yuan, Wenbi Wu, Kai Yang
{"title":"The conserved cysteines at position 18, 36, and 49 of Autographa californica multiple nucleopolyhedrovirus VP39 are essential for virus replication.","authors":"Leyuan Zhu, Lixia Xu, Wangtai Luo, Qingying Lai, Zhenqiu Huang, Meijin Yuan, Wenbi Wu, Kai Yang","doi":"10.1007/s11262-024-02111-5","DOIUrl":"10.1007/s11262-024-02111-5","url":null,"abstract":"<p><p>Autographa californica nucleopolyhedrovirus orf89 (vp39) encodes the major capsid protein VP39. Multiple alignments of protein sequences showed that VP39 has 8 conserved cysteine (Cys) residues. Cysteine residues play an important role in proper function of a protein. To determine the importance of these conserved cysteine residues for virus proliferation, a series of recombinant viruses harboring VP39-Cys mutants were constructed. Viral growth curves and transmission electron microscopy showed that mutation of Cys29, Cys132, Cys169, Cys229, or Cys232 of VP39 to alanine did not affect budded virion production; however, the mutation of Cys18, Cys36, or Cys49 to alanine resulted in interruption of capsid assembly. Co-immunoprecipitation assays showed that mutations of these 8 cysteines individually or simultaneously had no effect on self-association of VP39. Immunofluorescence analysis by confocal microscopy revealed that the subcellular localization of VP39 with mutations in Cys18, Cys36 or Cys49 was exclusively distributed in the cytoplasm of a cell regardless of virus infection or not, while the wild-type VP39 or the VP39 carrying mutations in Cys29, Cys132, Cys169, Cys229, or Cys232 was distributed throughout the cytoplasm and the nucleus. Our results demonstrated that Cys18, Cys36, and Cys49 are essential for the proper localization of VP39, which is a prerequisite for successful nucleocapsid assembly of the virus.</p>","PeriodicalId":51212,"journal":{"name":"Virus Genes","volume":" ","pages":"711-724"},"PeriodicalIF":16.4,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142378594","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Virus GenesPub Date : 2024-12-01Epub Date: 2024-08-16DOI: 10.1007/s11262-024-02098-z
Momoko Matsuyama, Yasuhiro Tomitaka
{"title":"Molecular characterization and comparison of tomato zonate spot virus isolated in Japan and China.","authors":"Momoko Matsuyama, Yasuhiro Tomitaka","doi":"10.1007/s11262-024-02098-z","DOIUrl":"10.1007/s11262-024-02098-z","url":null,"abstract":"<p><p>The complete genome sequence of Orthotospovirus tomatozonae (tomato zonate spot virus, TZSV) isolated in Japan was determined and compared with that of Chinese isolates. The lengths of the S, M, and L segments of the RNA genomes of the Japanese isolate (TZSV-TZ1-3) were 3194, 4675, and 8916 nucleotides, respectively, which were similar to the Chinese isolates. Moreover, the eight motifs on the RNA-dependent RNA polymerase (RdRp) gene were conserved in both TZSV-TZ1-3 and Chinese TZSV isolates (TZSV-Bidens and TZSV-Tomato-YN). The nucleotide identity of the genes among the TZSV isolates was more than 94%, indicating low diversity among viruses. The phylogenetic analysis and the prediction of the cleavage sites in the glycoprotein showed that the TZSV-TZ1-3 isolate was closely related to TZSV-Tomato-YN isolated from China. However, there were unique frameshifts and deletions on the RdRp and glycoprotein genes of the TZSV-Tomato-YN isolate, suggesting that both isolates were genetically distinct. The findings of this study indicate that the TZSV-TZ1-3 isolate originated in China and show the sequence diversity among TZSV isolates.</p>","PeriodicalId":51212,"journal":{"name":"Virus Genes","volume":" ","pages":"674-683"},"PeriodicalIF":16.4,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141989497","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Virus GenesPub Date : 2024-12-01Epub Date: 2024-08-20DOI: 10.1007/s11262-024-02101-7
Takao Ito
{"title":"First reports of several viruses and a viroid including a novel vitivirus in Japan, found through virome analysis of bulk grape genetic resources.","authors":"Takao Ito","doi":"10.1007/s11262-024-02101-7","DOIUrl":"10.1007/s11262-024-02101-7","url":null,"abstract":"<p><p>Virome analysis was performed on 174 grape genetic resources from the National Agriculture and Food Research Organization, Japan. A total of 20 bulk samples was prepared by grouping the vines into batches of 6-10 plants. Each of the bulk samples was analyzed using high-throughput sequencing, which detected 27 viruses and 5 viroids, including six viruses and one viroid reported in Japan for the first time (grapevine viruses F, L, and T, grapevine Kizil Sapak virus, grapevine Syrah virus 1, grapevine satellite virus, and grapevine yellow speckle viroid 2). In addition, a novel vitivirus was detected with a maximum nucleotide sequence identity of only 58% to its closest relative, grapevine virus A (GVA). The genome of this novel virus was 7,461 nucleotides in length and encoded five open reading frames showing the typical genomic structure of vitiviruses. Phylogenetic trees of vitiviruses placed it in a distinct position nearest to GVA or grapevine virus F (GVF) in genomes and amino acids of deduced replication-associated protein (RAP) and coat protein (CP). The amino acid sequence identities of RAP and CP with GVA, GVF, and other vitiviruses were a maximum of 53% and 73%, respectively, which were significantly below the species demarcation threshold of 80% in the genus. The low identity and phylogenetic analyses indicate the discovery of a novel vitivirus species provisionally named grapevine virus P.</p>","PeriodicalId":51212,"journal":{"name":"Virus Genes","volume":" ","pages":"684-694"},"PeriodicalIF":16.4,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142005797","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Virus GenesPub Date : 2024-12-01Epub Date: 2024-08-28DOI: 10.1007/s11262-024-02100-8
Aziz Ul-Rahman, Muhammad Zubair Shabbir, Majeeda Rasheed, Nusrat Shafi, Kalsoom AbdulRazaq, Hamna Ramzan, Rauf Mehmood, Junaid Ali Khan
{"title":"Comparative genomics and evolutionary analysis of dengue virus strains circulating in Pakistan.","authors":"Aziz Ul-Rahman, Muhammad Zubair Shabbir, Majeeda Rasheed, Nusrat Shafi, Kalsoom AbdulRazaq, Hamna Ramzan, Rauf Mehmood, Junaid Ali Khan","doi":"10.1007/s11262-024-02100-8","DOIUrl":"10.1007/s11262-024-02100-8","url":null,"abstract":"<p><p>Dengue fever virus (DENV) poses a significant public health risk in tropical and subtropical regions across the world. Although the dengue fever virus (DENV) exhibits significant genetic diversity and has the potential to evolve, there is a lack of comprehensive research on the comparative genomics and evolutionary dynamics of the virus in Pakistan. Phylogenetic analysis demonstrated the circulation of all four dengue virus serotypes (DENV-1, - 2, - 3, and - 4) with prevalent genotypes III and V within DENV-1, cosmopolitan genotype within DENV-2, genotype III within DENV-3, and genotype I within DENV-4 during 2006-2014. Based on the complete envelope region, genome-wide residue signature and genetic diversity indicate that there is a high level of genetic diversity among DENV-1 strains, while DENV-3 strains exhibit the least genetic diversity. Comparative analysis of all four DENV serotypes revealed that certain codons in DENV-2 and -4 were subject to strong purifying selection, while a few codon sites in the envelope region showed evidence of positive selection. These findings provided valuable insights into the comparative genomics and evolutionary pattern of DENV strains reported from Pakistan. Whether those characteristics conferred a fitness advantage to DENV-1 genotypes within a specific geography and time interval warrants further investigations. The findings of the current study will contribute to tracking disease dynamics, understanding virus transmission and evolution, and formulating effective disease control strategies.</p>","PeriodicalId":51212,"journal":{"name":"Virus Genes","volume":" ","pages":"603-620"},"PeriodicalIF":1.9,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142094080","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}