{"title":"Plasma proteins and herpes simplex virus infection: a proteome-wide Mendelian randomization study.","authors":"Canya Fu, Wenjie Xu, Xia Xu, Fei Zhao, Canjie Zheng, Zhiying Yin","doi":"10.1007/s11262-025-02145-3","DOIUrl":"https://doi.org/10.1007/s11262-025-02145-3","url":null,"abstract":"<p><p>Proteomics plays a pivotal role in clinical diagnostics and monitoring. We conducted proteome-wide Mendelian randomization (MR) study to estimate the causal association between plasma proteins and Herpes simplex virus (HSV) infection. Data for 2,923 plasma protein levels were obtained from a large-scale protein quantitative trait loci study involving 54,219 individuals, conducted by the UK Biobank Pharma Proteomics Project. HSV-associated SNPs were derived from the FinnGen study, which included a total of 400,098 subjects infected with HSV. MR analysis was performed to assess the links between protein levels and the risk of HSV infection. Furthermore, a Phenome-wide MR analysis was utilized to explore potential alternative indications or predict adverse drug events. Finally, we evaluated the impact of 1,949 plasma proteins on HSV infection, identifying 48 proteins that were negatively associated with HSV infection and 54 proteins that were positively associated. Genetically higher HLA-E levels were significantly associated with increased HSV infection risk (OR = 1.39, 95% CI: 1.17-1.65, P = 2.13 × 10<sup>-4</sup>, while ULBP2 showed a significant negative association with HSV infection risk (OR = 0.81, 95% CI: 0.73-0.90, P = 6.25 × 10<sup>-5</sup>) in the primary analysis. No significant heterogeneity or pleiotropy was observed in any of the results. Additionally, we found a suggestive association of Lymphotoxin-beta, SMOC1, MICB_MICA, ASGR1, and ANXA10 with HSV infection risk (P < 0.003). In Phenome-wide MR analysis, HLA-E was associated with 214 phenotypes (P<sub>FDR</sub> < 0.10) while ULBP2 did not show significant associations with any diseases after FDR adjustment. The comprehensive MR analysis established a causal link between multiple plasma proteins and HSV infection, emphasizing the roles of HLA-E and ULBP2. These results provide new insights into the biological mechanisms of HSV and support the potential for early intervention and treatment strategies, although further research is needed to validate these plasma protein biomarkers.</p>","PeriodicalId":51212,"journal":{"name":"Virus Genes","volume":" ","pages":""},"PeriodicalIF":1.9,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143484676","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Virus GenesPub Date : 2025-02-22DOI: 10.1007/s11262-025-02144-4
José Antonio Cortés-Trigueros, Axel Ossio, Norma Heredia, Néstor Casillas-Vega, Santos García, Jose Angel Merino-Mascorro
{"title":"Norovirus GI.5 [P4]: first report of the rare norovirus recombinant variant in Northeastern Mexico and its global epidemiological context.","authors":"José Antonio Cortés-Trigueros, Axel Ossio, Norma Heredia, Néstor Casillas-Vega, Santos García, Jose Angel Merino-Mascorro","doi":"10.1007/s11262-025-02144-4","DOIUrl":"https://doi.org/10.1007/s11262-025-02144-4","url":null,"abstract":"<p><p>Norovirus is the primary cause of acute gastroenteritis outbreaks, considerably impacting children under 5 years, followed by older adults and immunocompromised individuals. As an RNA virus, norovirus exhibits high genetic variability, driven by recombination events at the ORF1-ORF2 junction. This study reports the first detection of the rare norovirus GI.5 [P4] variant in Northeastern Mexico, identified in a single positive isolate (MTY0115; GenBank: PQ369661) from a sample group of 386 individuals, with a prevalence of 0.25%. Notably, norovirus GII was not detected. Phylogenetic analysis of the partial RdRp/VP1 region revealed clustering with global GI.5 [P4] sequences, revealing evolutionary relationships with isolates from Asia, Europe, and America. A recombination event was identified at position 5307 (breakpoint based on reference sequences of GI.5 [P5] and GI.4 [P4]) within ORF1, with genetic inheritance from a GI.5 [P5] isolate from Moscow, Russia, and a GI.4 [P4] isolate from France. Typing classification through sequencing of overlapping ORF1 and ORF2 regions is valuable for understanding genomic variations and their epidemiological impact on at-risk and non-risk populations.</p>","PeriodicalId":51212,"journal":{"name":"Virus Genes","volume":" ","pages":""},"PeriodicalIF":1.9,"publicationDate":"2025-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143477155","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Virus GenesPub Date : 2025-02-18DOI: 10.1007/s11262-025-02143-5
Reem M Aljowaie, Mohamed A Farrag, Tarad Abalkhail, Ibrahim M Aziz, Abdulaziz M Almuqrin, Noorah A Alkubaisi, Asma N Alsaleh, Fahad N Almajhdi
{"title":"Molecular epidemiology and phylogenetic analysis of human respiratory syncytial virus type B in Riyadh, Saudi Arabia.","authors":"Reem M Aljowaie, Mohamed A Farrag, Tarad Abalkhail, Ibrahim M Aziz, Abdulaziz M Almuqrin, Noorah A Alkubaisi, Asma N Alsaleh, Fahad N Almajhdi","doi":"10.1007/s11262-025-02143-5","DOIUrl":"https://doi.org/10.1007/s11262-025-02143-5","url":null,"abstract":"<p><p>The human respiratory syncytial virus (HRSV), recently known as the human orthopneumovirus (HOPV), continues to generate new variants with the ability to cause recurrent infections. Data regarding HRSV-B evolution and genetic diversity in Riyadh, Saudi Arabia, are very limited. Therefore, the current study was designed to investigate the prevalence, genetic diversity, and evolution of HRSV-B. A total of 200 nasopharyngeal aspirate (NPA) samples from hospitalized children at King Khaled University Hospital were screened for the presence of HRSV-B. The second hypervariable region (2nd HVR) of the G gene from all 37 HRSV-B genotypes was used to study sequences and family trees. Of the 200 screened nasopharyngeal samples (NPAs), 16 (8%) were positive for HRSV-B, with a high incidence rate in the age group of 2 to 5 months. The analysis of the 2nd HVR region's sequence showed several differences, such as point mutations, different protein lengths, sequence gaps, duplication regions, and glycosylation sites. A total of 46-point mutations were reported, of which 29 changed their corresponding amino acid residues. N-linked glycosylation sites in Riyadh strains were 3, whereas O-linked glycosylation sites ranged from 22 to 32. Phylogenetic analysis revealed that Riyadh strains from the seasons 2019/20 and 2022/23 are grouped into the subclade BA-11. Other Riyadh strains from different previous seasons were clustered into different sub-genotypes (BA-9, -10, and -12). Seasonal surveillance and molecular evolution tracking of HRSV-B is essential for the early detection of viral genotypes that might cause severe illness consequences and widespread transmission.</p>","PeriodicalId":51212,"journal":{"name":"Virus Genes","volume":" ","pages":""},"PeriodicalIF":1.9,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143450918","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Robust antiviral innate immune response and miRNA regulatory network were identified in ZIKV-infected cells: implications in the pathogenesis of ZIKV infection.","authors":"Mingshuang Lai, Rongji Lai, Baoren He, Xinwei Wang, Limin Chen, Qiuhong Mo","doi":"10.1007/s11262-025-02136-4","DOIUrl":"https://doi.org/10.1007/s11262-025-02136-4","url":null,"abstract":"<p><p>Zika virus (ZIKV) infection has emerged as a significant public health concern due to its association with fetal microcephaly and Guillain-Barre syndrome (GBS). Unfortunately, its detailed pathogenesis remains unclear. To better understand how ZIKV evades host antiviral immunity, we analyzed the microarray dataset (GSE98889) of ZIKV-infected primary human brain microvascular endothelial cells (hBMECs) retrieved from the gene expression omnibus (GEO). 160, 1423, 969, 829, and 600 differentially expressed genes (DEGs) were identified at 12, 24, 48, 72, and 216 hours post-ZIKV infection in hBMECs, respectively. Subsequently, 31 common DEGs across all time-points were selected for further analysis. Gene ontology (GO) functional analysis showed these 31 DEGs were mainly involved in the host antiviral innate immune responses. Protein-protein interaction (PPI) network analysis identified 10 hub genes (MX1, OAS1, OAS2, IFI44, IFI44L, IFIT1, IFIT2, IFIT3, IFIH1, and XAF1), which were all interferon-stimulated genes (ISGs) and upregulated. qRT-PCR was used to validate the expression patterns of these 10 hub genes in different ZIKV-infected cell lines. Finally, miRNA-mRNA regulatory network analysis revealed that hsa-miR-129-2-3p, hsa-miR-138-5p, hsa-miR-21-3p, hsa-miR-27a-5p, hsa-miR-449a, and hsa-miR449b-5p were key miRNAs regulating these hub genes. Our study showed that ZIKV infection activated the host innate immune response to restrict ZIKV infection. The common pathways, hub genes, and their regulatory miRNA network offer new insights into virus-host interactions, enhancing our understanding of ZIKV pathogenesis.</p>","PeriodicalId":51212,"journal":{"name":"Virus Genes","volume":" ","pages":""},"PeriodicalIF":1.9,"publicationDate":"2025-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143426597","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Virus GenesPub Date : 2025-02-14DOI: 10.1007/s11262-025-02141-7
Pawel Bieganowski, Iga Dalidowska, Olga Gazi, Magdalena Guzowska, Maciej Przybylski
{"title":"Study of Hsp90α and Hsp90β role in virus replication using cell lines with Hsp90 gene knockouts.","authors":"Pawel Bieganowski, Iga Dalidowska, Olga Gazi, Magdalena Guzowska, Maciej Przybylski","doi":"10.1007/s11262-025-02141-7","DOIUrl":"https://doi.org/10.1007/s11262-025-02141-7","url":null,"abstract":"<p><p>Replication of the human Enterovirus 71 (EV71) and herpes simplex virus 1 (HSV-1) requires Hsp90 chaperone activity. Vertebrate cells express two cytosolic Hsp90 proteins, Hsp90α and Hsp90β. Earlier reports suggested that EV71 replication might depend solely on the Hsp90β, whereas HSV-1 replication depended on Hsp90α. Here, we describe construction of the cell line knockouts missing Hsp90α or Hsp90β protein. Using these cells, we found that HSV-1 and, another enterovirus, Coxsackievirus B5 (CVB5) replicate in both Hsp90α and Hsp90β knockout cells with equal efficiency. The presented results demonstrate that cell lines with a mutation inactivating the specific HSP90 gene might be an easy-to-use and robust system to study specific cellular functions of Hsp90α and Hsp90β.</p>","PeriodicalId":51212,"journal":{"name":"Virus Genes","volume":" ","pages":""},"PeriodicalIF":1.9,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143415506","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Virus GenesPub Date : 2025-02-12DOI: 10.1007/s11262-025-02138-2
Chiranjib Chakraborty, Manojit Bhattacharya, Arpita Das, Ali S Abdelhameed
{"title":"Phylogenetic analyses of the spread of Clade I MPOX in African and non-African nations.","authors":"Chiranjib Chakraborty, Manojit Bhattacharya, Arpita Das, Ali S Abdelhameed","doi":"10.1007/s11262-025-02138-2","DOIUrl":"https://doi.org/10.1007/s11262-025-02138-2","url":null,"abstract":"<p><p>Recently, mpox has spread in some parts of Africa, such as Congo (DRC), Burundi, Rwanda, Uganda, and Kenya, worsening the situation in DRC and Burundi compared to the other parts of Africa due to the spread of the Clade Ib, with several confirmed and lethal cases. The study aims to analyze the broader molecular phylogenetics using greater complete genome sequences and molecular phylogenetics of Clade I (Clade Ia and Clade Ib), nucleotide diversity of the genome of Clade I, NGA/TCN context of G- > A/C- > T mutations, and epidemiology of the recent spread of mpox in the African countries. Overall molecular phylogenetics of mpox inform the divergence was noted between 0.00220 and 0.00265 and found Clade IIb has further subdivided into 37 sublineages. From our phylogenetic analysis and the tracking of recent mpox variants, we report the spread of Clade I (Clade Ib) of mpox, a virulent mpox, in the African continent, Thailand, Sweden, and USA. Furthermore, two Clades, Clade Ia and Clade Ib, have originated from Clade I. Recently, Clade Ib has expanded its region within African continent. We reported the mutation pattern in the genome. Epidemiological analysis indicates the most affected country is the Democratic Republic of the Congo (DRC). This work shows that mpox is steadily adapting as geographic area increases and can help the health authorities develop policies such as vaccinations, and travel restrictions to contain the spread of mpox.</p>","PeriodicalId":51212,"journal":{"name":"Virus Genes","volume":" ","pages":""},"PeriodicalIF":1.9,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143400739","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Virus GenesPub Date : 2025-02-01Epub Date: 2024-10-11DOI: 10.1007/s11262-024-02113-3
Craig S Smith, Darren J Underwood, Anita Gordon, Michael J Pyne, Anna Smyth, Benjamin Genge, Luke Driver, David G Mayer, Jane Oakey
{"title":"Identification and epidemiological analysis of a putative novel hantavirus in Australian flying foxes.","authors":"Craig S Smith, Darren J Underwood, Anita Gordon, Michael J Pyne, Anna Smyth, Benjamin Genge, Luke Driver, David G Mayer, Jane Oakey","doi":"10.1007/s11262-024-02113-3","DOIUrl":"10.1007/s11262-024-02113-3","url":null,"abstract":"<p><p>In July 2017, an investigation into the cause of neurological signs in a black flying fox (Pteropus alecto, family Pteropodidae) identified a putative novel hantavirus (Robina virus, ROBV, order Bunyavirales, family Hantaviridae, genus Mobatvirus) in its brain. Analysis of the evolutionary relationship between other hantaviruses using maximum-likelihood, a systematic Bayesian clustering approach, and a minimum spanning tree, all suggest that ROBV is most closely related to another Mobatvirus, Quezon virus, previously identified in the lung of a Philippine frugivorous bat (Rousettus amplexicaudatus, also family Pteropodidae). Subsequently, between March 2018 and October 2023, a total of 495 bats were opportunistically screened for ROBV with an experimental qRT-PCR. The total prevalence of ROBV RNA detected in Pteropus spp. was 4.2% (95% CI 2.8-6.4%). Binomial modelling identified that there was substantial evidence supporting an increase (P = 0.033) in the detection of ROBV RNA in bats in 2019 and 2020 suggesting of a possible transient epidemic. There was also moderate evidence to support the effect of season (P = 0.064), with peak detection in the cooler seasons, autumn, and winter, possibly driven by physiological and ecological factors similar to those already identified for other bat-borne viruses. This is Australia's first reported putative hantavirus and its identification could expand the southern known range of hantaviruses in Australasia.</p>","PeriodicalId":51212,"journal":{"name":"Virus Genes","volume":" ","pages":"71-80"},"PeriodicalIF":1.9,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11787259/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142401901","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The isolation and serotyping of foot-and-mouth disease virus in Iran during 2019-2022.","authors":"Siamak Khoshnood, Seyed Mahmoud Azimi, Zahra Ziafati Kafi, Hamideh Najafi, Arash Ghalyanchilangeroudi","doi":"10.1007/s11262-024-02116-0","DOIUrl":"10.1007/s11262-024-02116-0","url":null,"abstract":"<p><p>Foot-and-mouth disease (FMD) is a significant transboundary animal disease that has a considerable economic impact on livestock systems worldwide. In order to determine the presence and type of FMD virus in Iran, a total of 90 samples of vesicular fluid and epithelial tissue were collected from the tongues, tooth pads, and hooves of clinically suspect cattle on 40 vaccinated farms in 9 provinces of Iran. These samples were collected during four years, from January 2019 to December 2022, and the vaccine was a locally produced polyvalent inactivated vaccine. The collected samples were analyzed using ELISA and isolation methods to identify and characterize the FMD virus. The results of the ELISA tests revealed that 66.66% of the samples were positive for FMD, and the serotypes of the virus were determined. Considering ELISA reslut, 62% of the samples were assigned to serotype O, 33% to serotype A, and 5% to serotype Asia-1. Furthermore, 90% of the positive samples were inoculated onto monolayer cultures of pig kidneys (IB-RS2) for isolation and antigen detection by serotype-specific ELISA kit. The great majority of detected serotype O viruses were from Esfahan province, while the most detected serotype A and serotype Asia-1 viruses were from Qom and Tehran provinces, respectively. These findings indicate that the ELISA and isolation methods are suitable for identifying and typing FMD viruses. The vaccination program in Iran, which includes three serotypes (O, A, and Asia-1), appears to be effective in controlling the spread of the disease. However, the continued circulation of these serotypes in most provinces suggests that ongoing surveillance and vaccination efforts are necessary.</p>","PeriodicalId":51212,"journal":{"name":"Virus Genes","volume":" ","pages":"87-96"},"PeriodicalIF":1.9,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142407196","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Detection and molecular epidemiology of canine parvovirus and identification of highly pathogenic CPV-2c isolates from Shandong, China.","authors":"Jiahui Li, Baoyu Cheng, Zihe Li, Yanlei Cui, Haiyan Yang, Weiquan Liu, Chuanmei Zhang, Yongle Yu","doi":"10.1007/s11262-024-02125-z","DOIUrl":"10.1007/s11262-024-02125-z","url":null,"abstract":"<p><p>Canine parvovirus (CPV) is an important pathogen of dogs and wild carnivores. It is a single-stranded DNA virus with a high mutation frequency and antigenic drift. To research the prevalence and genetic variation of CPV in Shandong, 62 samples from diseased dogs were collected and examined by using PCR for parvovirus. Our results showed that the positivity was 62.9% (n = 39), VP2 gene were sequenced and compared with reference strains. For the parvovirus subtype prevalence, 7 strains were CPV-2a (17.9%) and 32 strains were CPV-2c (82.1%). The results of phylogenetic analysis of VP2 gene of the CPVs showed all 39 isolates formed a major clade and were distantly related to the commercial vaccine strains. By comparing amino acid (aa) sequences, this study discovered new mutations not previously reported which may be related to host range and antigenicity. Moreover, one CPV-2c strain (QN-55) was isolated and cultured on F81 cells, and characterized by whole-genome sequencing. The TCID<sub>50</sub> of this strain was 10<sup>-3.2</sup>/0.1 mL and animal tests have shown that the strain is fatal to infected dogs.</p>","PeriodicalId":51212,"journal":{"name":"Virus Genes","volume":" ","pages":"97-109"},"PeriodicalIF":1.9,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142774601","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Virus GenesPub Date : 2025-02-01Epub Date: 2024-12-18DOI: 10.1007/s11262-024-02122-2
Yumei Chen, Jie Gao, Rongqian Hua, Gaiping Zhang
{"title":"Pseudorabies virus as a zoonosis: scientific and public health implications.","authors":"Yumei Chen, Jie Gao, Rongqian Hua, Gaiping Zhang","doi":"10.1007/s11262-024-02122-2","DOIUrl":"10.1007/s11262-024-02122-2","url":null,"abstract":"<p><p>Pseudorabies virus (PRV) is a herpes virus, also known as Aujeszky's disease virus (ADV), which can cause a highly infectious disease pseudorabies (PR) in a variety of mammals. In the past, it has been debated whether PRV can infect humans, but more and more cases of PRV infection have been reported since 2017. The illness has claimed many victims and left survivors with serious sequelae. This indicates that humans may ignore the zoonotic ability of PRV. This review aims to summarize the pathology and pathogenesis of PRV and speculate on how it infects humans. This paper provides a comprehensive overview of the progression of PRV, including its virology characteristics, genomic organization, and genetic evolution. It also synthesises the existing literature on PRV infection in humans, and analyses the factors contributing to PRV zoonosis. Finally, the pathogenesis of PRV-infected pigs and other mammals was summarized, and the pathogenesis of PRV-infected humans was speculated.</p>","PeriodicalId":51212,"journal":{"name":"Virus Genes","volume":" ","pages":"9-25"},"PeriodicalIF":1.9,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142848032","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}