{"title":"ARF3 knockdown inhibits influenza a virus and virus-induced pneumonia.","authors":"Zhinan Zhang, Banghao Lu, Bihe Zeng","doi":"10.1007/s11262-025-02173-z","DOIUrl":null,"url":null,"abstract":"<p><p>Pneumonia, characterized by infection-induced inflammation of the lungs, poses a significant health burden, particularly among children. ADP ribosylation factor 3 (ARF3) is a key regulatory protein implicated in various pathological processes; however, its role in pneumonia caused by influenza A virus (IAV) remains inadequately understood. In this study, we demonstrated that ARF3 expression was upregulated in a young mouse model of IAV-induced pneumonia. Knockdown of ARF3 effectively mitigated lung injury in this model. Furthermore, suppression of ARF3 expression alleviated pulmonary inflammation by reducing the levels of pro-inflammatory cytokines, including TNF-α, IL-6, and IL-1β. In vitro experiments further revealed that ARF3 downregulation inhibited replication of the H3N2 IAV strain. Notably, ARF3 knockdown also attenuated NLRP3 inflammasome activation, a key mediator of inflammatory responses. Collectively, these findings provide the first evidence that ARF3 knockdown suppresses both IAV replication and virus-induced pneumonia by modulating inflammasome activation, suggesting that ARF3 may serve as a potential therapeutic target for pneumonia intervention.</p>","PeriodicalId":51212,"journal":{"name":"Virus Genes","volume":" ","pages":"554-561"},"PeriodicalIF":1.9000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Virus Genes","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11262-025-02173-z","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/3 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Pneumonia, characterized by infection-induced inflammation of the lungs, poses a significant health burden, particularly among children. ADP ribosylation factor 3 (ARF3) is a key regulatory protein implicated in various pathological processes; however, its role in pneumonia caused by influenza A virus (IAV) remains inadequately understood. In this study, we demonstrated that ARF3 expression was upregulated in a young mouse model of IAV-induced pneumonia. Knockdown of ARF3 effectively mitigated lung injury in this model. Furthermore, suppression of ARF3 expression alleviated pulmonary inflammation by reducing the levels of pro-inflammatory cytokines, including TNF-α, IL-6, and IL-1β. In vitro experiments further revealed that ARF3 downregulation inhibited replication of the H3N2 IAV strain. Notably, ARF3 knockdown also attenuated NLRP3 inflammasome activation, a key mediator of inflammatory responses. Collectively, these findings provide the first evidence that ARF3 knockdown suppresses both IAV replication and virus-induced pneumonia by modulating inflammasome activation, suggesting that ARF3 may serve as a potential therapeutic target for pneumonia intervention.
期刊介绍:
Viruses are convenient models for the elucidation of life processes. The study of viruses is again on the cutting edge of biological sciences: systems biology, genomics, proteomics, metagenomics, using the newest most powerful tools.
Huge amounts of new details on virus interactions with the cell, other pathogens and the hosts – animal (including human), insect, fungal, plant, bacterial, and archaeal - and their role in infection and disease are forthcoming in perplexing details requiring analysis and comments.
Virus Genes is dedicated to the publication of studies on the structure and function of viruses and their genes, the molecular and systems interactions with the host and all applications derived thereof, providing a forum for the analysis of data and discussion of its implications, and the development of new hypotheses.