Discovery and genome analysis of Yunxiao leafhopper virus 1 in Recilia dorsalis.

IF 1.9 4区 医学 Q3 GENETICS & HEREDITY
Muqmirah Naseem, Bozhong Li, Guangming Xiao, Zhongtian Xu, Taiyun Wei, Hui Wang
{"title":"Discovery and genome analysis of Yunxiao leafhopper virus 1 in Recilia dorsalis.","authors":"Muqmirah Naseem, Bozhong Li, Guangming Xiao, Zhongtian Xu, Taiyun Wei, Hui Wang","doi":"10.1007/s11262-025-02186-8","DOIUrl":null,"url":null,"abstract":"<p><p>In this study, we report the discovery of a novel virus, Yunxiao leafhopper virus 1 (YXLeV1), found in the insect vector Recilia dorsalis, a significant pest of rice crop. The complete genome of YXLeV1, consisting of 14,115 bp, was sequenced and analyzed. The whole viral genome shares only 36.32% identity with the RNA-dependent RNA polymerase (RdRp) of Hubei diptera virus 11, belonging to genus Alasvirus. It contains four open reading frames encoding a nucleoprotein (N), a hypothetical protein (p78) of unknown function, a glycoprotein (G), and an RNA-dependent RdRp. The N, G, and RdRp proteins of YXLeV1 share 22.0%, 34.05%, and 36.32% amino acid sequence identity with the corresponding sequence of Hubei diptera virus 11. As per the genus demarcation criteria of the family Xinmoviridae, viruses sharing less than 60% amino acid identity in the RdRp sequence with known members are considered to belong to new genera, so the observed 36.32% identity between YXLeV1 and Hubei diptera virus 11 supports the classification of YXLeV1 as the first member of a novel genus, which we propose to name Recilivirus. Phylogenetic analysis further confirms that YXLeV1 is distantly related to Hubei diptera virus 11, the sole member of the genus Alasvirus, and forms a separate clade supporting its classification as a member of a new genus. Given the ecological significance of R. dorsalis as a vector, this discovery adds to the catalog of viruses associated with this species and contributes to our understanding of virus vector associations.</p>","PeriodicalId":51212,"journal":{"name":"Virus Genes","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2025-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Virus Genes","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11262-025-02186-8","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, we report the discovery of a novel virus, Yunxiao leafhopper virus 1 (YXLeV1), found in the insect vector Recilia dorsalis, a significant pest of rice crop. The complete genome of YXLeV1, consisting of 14,115 bp, was sequenced and analyzed. The whole viral genome shares only 36.32% identity with the RNA-dependent RNA polymerase (RdRp) of Hubei diptera virus 11, belonging to genus Alasvirus. It contains four open reading frames encoding a nucleoprotein (N), a hypothetical protein (p78) of unknown function, a glycoprotein (G), and an RNA-dependent RdRp. The N, G, and RdRp proteins of YXLeV1 share 22.0%, 34.05%, and 36.32% amino acid sequence identity with the corresponding sequence of Hubei diptera virus 11. As per the genus demarcation criteria of the family Xinmoviridae, viruses sharing less than 60% amino acid identity in the RdRp sequence with known members are considered to belong to new genera, so the observed 36.32% identity between YXLeV1 and Hubei diptera virus 11 supports the classification of YXLeV1 as the first member of a novel genus, which we propose to name Recilivirus. Phylogenetic analysis further confirms that YXLeV1 is distantly related to Hubei diptera virus 11, the sole member of the genus Alasvirus, and forms a separate clade supporting its classification as a member of a new genus. Given the ecological significance of R. dorsalis as a vector, this discovery adds to the catalog of viruses associated with this species and contributes to our understanding of virus vector associations.

背蝇云霄叶蝉病毒1型的发现及基因组分析。
本研究报道了一种新的病毒——云霄叶蝉病毒1 (YXLeV1),该病毒是在水稻作物的重要害虫——背蚜(Recilia dorsalis)中发现的。对YXLeV1全长14115 bp的全基因组进行了测序和分析。病毒全基因组与湖北双翅目病毒11号(Alasvirus属)的RNA依赖性RNA聚合酶(RdRp)同源性仅为36.32%。它包含四个开放阅读框,编码一个核蛋白(N)、一个功能未知的假设蛋白(p78)、一个糖蛋白(G)和一个rna依赖的RdRp。YXLeV1的N、G和RdRp蛋白与湖北双翅虫病毒11的氨基酸序列同源性分别为22.0%、34.05%和36.32%。根据新病毒科属划分标准,病毒在RdRp序列中与已知成员的氨基酸同源性小于60%被认为属于新属,因此观察到的YXLeV1与湖北双翅目病毒11之间36.32%的同源性支持了YXLeV1作为新属第一成员的分类,我们建议将其命名为Recilivirus。系统发育分析进一步证实,YXLeV1与Alasvirus属唯一成员湖北双翅目病毒11号有远亲关系,并形成一个单独的分支,支持其作为新属成员的分类。鉴于dorsalis作为载体的生态意义,这一发现增加了与该物种相关的病毒目录,并有助于我们对病毒载体关联的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Virus Genes
Virus Genes 医学-病毒学
CiteScore
3.30
自引率
0.00%
发文量
76
审稿时长
3 months
期刊介绍: Viruses are convenient models for the elucidation of life processes. The study of viruses is again on the cutting edge of biological sciences: systems biology, genomics, proteomics, metagenomics, using the newest most powerful tools. Huge amounts of new details on virus interactions with the cell, other pathogens and the hosts – animal (including human), insect, fungal, plant, bacterial, and archaeal - and their role in infection and disease are forthcoming in perplexing details requiring analysis and comments. Virus Genes is dedicated to the publication of studies on the structure and function of viruses and their genes, the molecular and systems interactions with the host and all applications derived thereof, providing a forum for the analysis of data and discussion of its implications, and the development of new hypotheses.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信