伊朗人群中RBD突变与COVID-19疾病严重程度的关系

IF 1.9 4区 医学 Q3 GENETICS & HEREDITY
Mozhgan Mondeali, Mohamad Mahjoor, Mansoor Khaledi, Ahdiyeh Saghabashi, Seyedeh Faride Alavi Rostami, Mohammad Hossein Modarressi
{"title":"伊朗人群中RBD突变与COVID-19疾病严重程度的关系","authors":"Mozhgan Mondeali, Mohamad Mahjoor, Mansoor Khaledi, Ahdiyeh Saghabashi, Seyedeh Faride Alavi Rostami, Mohammad Hossein Modarressi","doi":"10.1007/s11262-025-02168-w","DOIUrl":null,"url":null,"abstract":"<p><p>The global public health is still at risk due to the COVID-19 pandemic, which was caused by SARS-CoV-2. Disease severity varies among patients and is influenced by mutations in the viral genome, particularly within the spike protein's receptor-binding domain (RBD). This study aimed to investigate the association between RBD mutations and disease severity and to shed light on the fundamental molecular mechanisms. Nasopharyngeal and oropharyngeal samples were obtained from 70 COVID-19 patients in Iran, including 35 mild and 35 deceased cases. The RBD region of the spike protein gene underwent amplification through reverse transcription-polymerase chain reaction (RT-PCR) and was subsequently sequenced using Sanger sequencing. The impact of RBD mutations on binding affinity to human ACE2 (hACE2) was assessed by molecular docking analyses. Sequence analysis identified seven nonsynonymous mutations within the RBD region. The N501Y mutation, which was the most prevalent, showed a significant correlation with disease severity. Molecular docking revealed that the N501Y substitution enhanced binding affinity to hACE2 by increasing hydrophobic interactions and altering the interaction patterns of neighboring residues. This study demonstrates that the N501Y mutation has an independent association with increased severity of COVID-19, likely due to its effect on strengthening the RBD-hACE2 interaction. Further studies involving larger cohorts and diverse populations are necessary to confirm these results and to explore their potential implications for disease management and therapeutic strategies.</p>","PeriodicalId":51212,"journal":{"name":"Virus Genes","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2025-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Association of RBD mutations with COVID-19 disease severity in the Iranian population.\",\"authors\":\"Mozhgan Mondeali, Mohamad Mahjoor, Mansoor Khaledi, Ahdiyeh Saghabashi, Seyedeh Faride Alavi Rostami, Mohammad Hossein Modarressi\",\"doi\":\"10.1007/s11262-025-02168-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The global public health is still at risk due to the COVID-19 pandemic, which was caused by SARS-CoV-2. Disease severity varies among patients and is influenced by mutations in the viral genome, particularly within the spike protein's receptor-binding domain (RBD). This study aimed to investigate the association between RBD mutations and disease severity and to shed light on the fundamental molecular mechanisms. Nasopharyngeal and oropharyngeal samples were obtained from 70 COVID-19 patients in Iran, including 35 mild and 35 deceased cases. The RBD region of the spike protein gene underwent amplification through reverse transcription-polymerase chain reaction (RT-PCR) and was subsequently sequenced using Sanger sequencing. The impact of RBD mutations on binding affinity to human ACE2 (hACE2) was assessed by molecular docking analyses. Sequence analysis identified seven nonsynonymous mutations within the RBD region. The N501Y mutation, which was the most prevalent, showed a significant correlation with disease severity. Molecular docking revealed that the N501Y substitution enhanced binding affinity to hACE2 by increasing hydrophobic interactions and altering the interaction patterns of neighboring residues. This study demonstrates that the N501Y mutation has an independent association with increased severity of COVID-19, likely due to its effect on strengthening the RBD-hACE2 interaction. Further studies involving larger cohorts and diverse populations are necessary to confirm these results and to explore their potential implications for disease management and therapeutic strategies.</p>\",\"PeriodicalId\":51212,\"journal\":{\"name\":\"Virus Genes\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2025-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Virus Genes\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s11262-025-02168-w\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Virus Genes","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11262-025-02168-w","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

摘要

由于SARS-CoV-2引起的COVID-19大流行,全球公共卫生仍处于危险之中。疾病严重程度因患者而异,并受病毒基因组突变的影响,特别是在刺突蛋白的受体结合域(RBD)内。本研究旨在探讨RBD突变与疾病严重程度之间的关系,并揭示其基本的分子机制。采集了伊朗70例COVID-19患者的鼻咽和口咽样本,其中包括35例轻度病例和35例死亡病例。通过逆转录聚合酶链反应(RT-PCR)扩增刺突蛋白基因的RBD区域,随后使用Sanger测序进行测序。通过分子对接分析评估RBD突变对与人类ACE2 (hACE2)结合亲和力的影响。序列分析确定了RBD区域内的7个非同义突变。最普遍的N501Y突变显示出与疾病严重程度的显著相关性。分子对接发现,N501Y取代通过增加疏水相互作用和改变邻近残基的相互作用模式,增强了与hACE2的结合亲和力。该研究表明,N501Y突变与COVID-19严重程度的增加有独立的关联,可能是由于其增强RBD-hACE2相互作用的作用。进一步的研究需要涉及更大的队列和不同的人群来证实这些结果,并探索其对疾病管理和治疗策略的潜在影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Association of RBD mutations with COVID-19 disease severity in the Iranian population.

The global public health is still at risk due to the COVID-19 pandemic, which was caused by SARS-CoV-2. Disease severity varies among patients and is influenced by mutations in the viral genome, particularly within the spike protein's receptor-binding domain (RBD). This study aimed to investigate the association between RBD mutations and disease severity and to shed light on the fundamental molecular mechanisms. Nasopharyngeal and oropharyngeal samples were obtained from 70 COVID-19 patients in Iran, including 35 mild and 35 deceased cases. The RBD region of the spike protein gene underwent amplification through reverse transcription-polymerase chain reaction (RT-PCR) and was subsequently sequenced using Sanger sequencing. The impact of RBD mutations on binding affinity to human ACE2 (hACE2) was assessed by molecular docking analyses. Sequence analysis identified seven nonsynonymous mutations within the RBD region. The N501Y mutation, which was the most prevalent, showed a significant correlation with disease severity. Molecular docking revealed that the N501Y substitution enhanced binding affinity to hACE2 by increasing hydrophobic interactions and altering the interaction patterns of neighboring residues. This study demonstrates that the N501Y mutation has an independent association with increased severity of COVID-19, likely due to its effect on strengthening the RBD-hACE2 interaction. Further studies involving larger cohorts and diverse populations are necessary to confirm these results and to explore their potential implications for disease management and therapeutic strategies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Virus Genes
Virus Genes 医学-病毒学
CiteScore
3.30
自引率
0.00%
发文量
76
审稿时长
3 months
期刊介绍: Viruses are convenient models for the elucidation of life processes. The study of viruses is again on the cutting edge of biological sciences: systems biology, genomics, proteomics, metagenomics, using the newest most powerful tools. Huge amounts of new details on virus interactions with the cell, other pathogens and the hosts – animal (including human), insect, fungal, plant, bacterial, and archaeal - and their role in infection and disease are forthcoming in perplexing details requiring analysis and comments. Virus Genes is dedicated to the publication of studies on the structure and function of viruses and their genes, the molecular and systems interactions with the host and all applications derived thereof, providing a forum for the analysis of data and discussion of its implications, and the development of new hypotheses.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信