Li-Juan Zhu, Shulian Su, Jingke Li, Yubin Chi, Yankun Zhu, Xing Chen, Lan-Yi Su, Juncheng Zhang, Zhongtian Xu
{"title":"一种感染雌雄同体蜥脚类动物的新型疱疹病毒的全基因组序列。","authors":"Li-Juan Zhu, Shulian Su, Jingke Li, Yubin Chi, Yankun Zhu, Xing Chen, Lan-Yi Su, Juncheng Zhang, Zhongtian Xu","doi":"10.1007/s11262-025-02185-9","DOIUrl":null,"url":null,"abstract":"<p><p>In the present study, the full-genome sequence of a novel potyvirus, provisionally named \"Sauropus androgynus potyvirus 1\" (SAPV1), was determined using a combination of high-throughput sequencing (HTS) contig assembly, reverse transcription polymerase chain reaction (RT-PCR), and rapid amplification of cDNA ends (RACE) PCR. The full-genome sequencing of SAPV1, excluding the 3' poly(A) tail, was 10,365 nucleotides long and encoded a large polyprotein comprising 3,315 amino acids. Maximum likelihood phylogenetic analysis based on the multiple sequence alignment of the polyprotein sequence revealed that SAPV1 clustered with the genus Potyvirus as a monophyletic clade, with its closest evolutionary relative being the Plum pox virus (PPV). BLAST searches revealed that the polyprotein sequence of SAPV1 shares the highest amino acid sequence identity of 45.6% with known viruses, with the highest being PPV. According to the species demarcation criteria of the family Potyviridae and the phylogenetic analysis, we propose that SAPV1 represents a novel member of the genus Potyvirus, infecting Sauropus androgynus, a plant widely used in medicine and the food industry.</p>","PeriodicalId":51212,"journal":{"name":"Virus Genes","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2025-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Full-genome sequence of a novel potyvirus infecting Sauropus androgynus.\",\"authors\":\"Li-Juan Zhu, Shulian Su, Jingke Li, Yubin Chi, Yankun Zhu, Xing Chen, Lan-Yi Su, Juncheng Zhang, Zhongtian Xu\",\"doi\":\"10.1007/s11262-025-02185-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In the present study, the full-genome sequence of a novel potyvirus, provisionally named \\\"Sauropus androgynus potyvirus 1\\\" (SAPV1), was determined using a combination of high-throughput sequencing (HTS) contig assembly, reverse transcription polymerase chain reaction (RT-PCR), and rapid amplification of cDNA ends (RACE) PCR. The full-genome sequencing of SAPV1, excluding the 3' poly(A) tail, was 10,365 nucleotides long and encoded a large polyprotein comprising 3,315 amino acids. Maximum likelihood phylogenetic analysis based on the multiple sequence alignment of the polyprotein sequence revealed that SAPV1 clustered with the genus Potyvirus as a monophyletic clade, with its closest evolutionary relative being the Plum pox virus (PPV). BLAST searches revealed that the polyprotein sequence of SAPV1 shares the highest amino acid sequence identity of 45.6% with known viruses, with the highest being PPV. According to the species demarcation criteria of the family Potyviridae and the phylogenetic analysis, we propose that SAPV1 represents a novel member of the genus Potyvirus, infecting Sauropus androgynus, a plant widely used in medicine and the food industry.</p>\",\"PeriodicalId\":51212,\"journal\":{\"name\":\"Virus Genes\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2025-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Virus Genes\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s11262-025-02185-9\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Virus Genes","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11262-025-02185-9","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
Full-genome sequence of a novel potyvirus infecting Sauropus androgynus.
In the present study, the full-genome sequence of a novel potyvirus, provisionally named "Sauropus androgynus potyvirus 1" (SAPV1), was determined using a combination of high-throughput sequencing (HTS) contig assembly, reverse transcription polymerase chain reaction (RT-PCR), and rapid amplification of cDNA ends (RACE) PCR. The full-genome sequencing of SAPV1, excluding the 3' poly(A) tail, was 10,365 nucleotides long and encoded a large polyprotein comprising 3,315 amino acids. Maximum likelihood phylogenetic analysis based on the multiple sequence alignment of the polyprotein sequence revealed that SAPV1 clustered with the genus Potyvirus as a monophyletic clade, with its closest evolutionary relative being the Plum pox virus (PPV). BLAST searches revealed that the polyprotein sequence of SAPV1 shares the highest amino acid sequence identity of 45.6% with known viruses, with the highest being PPV. According to the species demarcation criteria of the family Potyviridae and the phylogenetic analysis, we propose that SAPV1 represents a novel member of the genus Potyvirus, infecting Sauropus androgynus, a plant widely used in medicine and the food industry.
期刊介绍:
Viruses are convenient models for the elucidation of life processes. The study of viruses is again on the cutting edge of biological sciences: systems biology, genomics, proteomics, metagenomics, using the newest most powerful tools.
Huge amounts of new details on virus interactions with the cell, other pathogens and the hosts – animal (including human), insect, fungal, plant, bacterial, and archaeal - and their role in infection and disease are forthcoming in perplexing details requiring analysis and comments.
Virus Genes is dedicated to the publication of studies on the structure and function of viruses and their genes, the molecular and systems interactions with the host and all applications derived thereof, providing a forum for the analysis of data and discussion of its implications, and the development of new hypotheses.