Full-genome sequence of a novel potyvirus infecting Sauropus androgynus.

IF 1.9 4区 医学 Q3 GENETICS & HEREDITY
Li-Juan Zhu, Shulian Su, Jingke Li, Yubin Chi, Yankun Zhu, Xing Chen, Lan-Yi Su, Juncheng Zhang, Zhongtian Xu
{"title":"Full-genome sequence of a novel potyvirus infecting Sauropus androgynus.","authors":"Li-Juan Zhu, Shulian Su, Jingke Li, Yubin Chi, Yankun Zhu, Xing Chen, Lan-Yi Su, Juncheng Zhang, Zhongtian Xu","doi":"10.1007/s11262-025-02185-9","DOIUrl":null,"url":null,"abstract":"<p><p>In the present study, the full-genome sequence of a novel potyvirus, provisionally named \"Sauropus androgynus potyvirus 1\" (SAPV1), was determined using a combination of high-throughput sequencing (HTS) contig assembly, reverse transcription polymerase chain reaction (RT-PCR), and rapid amplification of cDNA ends (RACE) PCR. The full-genome sequencing of SAPV1, excluding the 3' poly(A) tail, was 10,365 nucleotides long and encoded a large polyprotein comprising 3,315 amino acids. Maximum likelihood phylogenetic analysis based on the multiple sequence alignment of the polyprotein sequence revealed that SAPV1 clustered with the genus Potyvirus as a monophyletic clade, with its closest evolutionary relative being the Plum pox virus (PPV). BLAST searches revealed that the polyprotein sequence of SAPV1 shares the highest amino acid sequence identity of 45.6% with known viruses, with the highest being PPV. According to the species demarcation criteria of the family Potyviridae and the phylogenetic analysis, we propose that SAPV1 represents a novel member of the genus Potyvirus, infecting Sauropus androgynus, a plant widely used in medicine and the food industry.</p>","PeriodicalId":51212,"journal":{"name":"Virus Genes","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2025-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Virus Genes","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11262-025-02185-9","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

In the present study, the full-genome sequence of a novel potyvirus, provisionally named "Sauropus androgynus potyvirus 1" (SAPV1), was determined using a combination of high-throughput sequencing (HTS) contig assembly, reverse transcription polymerase chain reaction (RT-PCR), and rapid amplification of cDNA ends (RACE) PCR. The full-genome sequencing of SAPV1, excluding the 3' poly(A) tail, was 10,365 nucleotides long and encoded a large polyprotein comprising 3,315 amino acids. Maximum likelihood phylogenetic analysis based on the multiple sequence alignment of the polyprotein sequence revealed that SAPV1 clustered with the genus Potyvirus as a monophyletic clade, with its closest evolutionary relative being the Plum pox virus (PPV). BLAST searches revealed that the polyprotein sequence of SAPV1 shares the highest amino acid sequence identity of 45.6% with known viruses, with the highest being PPV. According to the species demarcation criteria of the family Potyviridae and the phylogenetic analysis, we propose that SAPV1 represents a novel member of the genus Potyvirus, infecting Sauropus androgynus, a plant widely used in medicine and the food industry.

一种感染雌雄同体蜥脚类动物的新型疱疹病毒的全基因组序列。
本研究采用高通量测序(HTS)、逆转录聚合酶链反应(RT-PCR)和cDNA末端快速扩增(RACE) PCR相结合的方法测定了一种新型potyvirus(暂称Sauropus androgynus potyvirus 1, SAPV1)的全基因组序列。SAPV1的全基因组测序(不包括3' poly(A)尾)长10,365个核苷酸,编码一个包含3,315个氨基酸的大多蛋白。基于多蛋白序列比对的最大似然系统发育分析表明,SAPV1与梅痘病毒属同属一个单系进化分支,进化上最近的亲戚是梅痘病毒(PPV)。BLAST检索结果显示,SAPV1多蛋白序列与已知病毒的氨基酸序列同源性最高,为45.6%,其中以PPV最高。根据potyvirridae科的种划分标准和系统发育分析,我们认为SAPV1是potyvirridae属的一个新成员,它感染的是在医药和食品工业中广泛应用的植物Sauropus androgynus。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Virus Genes
Virus Genes 医学-病毒学
CiteScore
3.30
自引率
0.00%
发文量
76
审稿时长
3 months
期刊介绍: Viruses are convenient models for the elucidation of life processes. The study of viruses is again on the cutting edge of biological sciences: systems biology, genomics, proteomics, metagenomics, using the newest most powerful tools. Huge amounts of new details on virus interactions with the cell, other pathogens and the hosts – animal (including human), insect, fungal, plant, bacterial, and archaeal - and their role in infection and disease are forthcoming in perplexing details requiring analysis and comments. Virus Genes is dedicated to the publication of studies on the structure and function of viruses and their genes, the molecular and systems interactions with the host and all applications derived thereof, providing a forum for the analysis of data and discussion of its implications, and the development of new hypotheses.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信