{"title":"Fluid Mechanics of Blood Cells and Vesicles Squeezing Through Narrow Constrictions","authors":"Zhangli Peng, Annie Viallat, Yuan-Nan Young","doi":"10.1146/annurev-fluid-112723-052727","DOIUrl":"https://doi.org/10.1146/annurev-fluid-112723-052727","url":null,"abstract":"The squeezing of blood cells and vesicles through narrow constrictions, such as splenic slits, pulmonary capillaries, vascular endothelial gaps, and microfluidic channels, is crucial in physiology and biotechnology, with fluid mechanics playing a central role. The diverse geometries of these constrictions, the associated flow conditions, and the unique mechanical properties of cells and vesicles create a rich subject in fluid mechanics emerging from nonlinear dynamics of fluid–structure interactions involving both lubrication and Marangoni flows. Advances in microfluidics, video microscopy, and computational modeling have enabled investigations into these complex processes. This review surveys the key features and approaches, recent prominent studies, and unresolved challenges related to these processes, offering insights for researchers across biomechanics, biomedical engineering, biological physics, hematology, physiology, and applied mathematics.","PeriodicalId":50754,"journal":{"name":"Annual Review of Fluid Mechanics","volume":"99 1","pages":""},"PeriodicalIF":27.7,"publicationDate":"2025-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145215609","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Fluid Mechanics Challenges in Direct-Ink-Writing Additive Manufacturing","authors":"Alban Sauret, Tyler R. Ray, Brett G. Compton","doi":"10.1146/annurev-fluid-100224-111013","DOIUrl":"https://doi.org/10.1146/annurev-fluid-100224-111013","url":null,"abstract":"Direct-ink writing (DIW) has rapidly become a versatile 3D fabrication method due to its ability to deposit a wide range of complex fluids into customizable 3D geometries. This review highlights key fundamental fluid mechanics and soft matter challenges across the different stages of the DIW printing process. The rheology of fluids and suspensions governs the flow behavior through narrow nozzles, posing questions about extrudability, confined flow dynamics, and clogging mechanisms. Downstream, the formation and deposition of extruded filaments involve extensional flows and potential instabilities, while postdeposition dynamics introduces complexities related to yield stress and structural stability. These stages are inherently interdependent, as optimizing material composition without considering filament stability risks compromising the final structure. As DIW applications expand through advanced ink formulations, developing fundamental fluid mechanics frameworks is essential to replace trial-and-error approaches with predictive design methodologies to enable more precise control over and reliability of the printing process.","PeriodicalId":50754,"journal":{"name":"Annual Review of Fluid Mechanics","volume":"7 1","pages":""},"PeriodicalIF":27.7,"publicationDate":"2025-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145215610","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Fluid Deformation and Mixing in Porous Media as Drivers for Chemical and Biological Processes","authors":"Tanguy Le Borgne, Joris Heyman","doi":"10.1146/annurev-fluid-112723-051940","DOIUrl":"https://doi.org/10.1146/annurev-fluid-112723-051940","url":null,"abstract":"Porous media flows are generally viewed as inefficient mixers, where solutes may be dispersed yet poorly mixed, making mixing a critical limiting factor for a wide range of processes. The complexity and opacity of porous structures have long made these dynamics difficult to observe. With emerging experimental techniques, concepts and models of mixing in porous media are rapidly evolving. Recent advances link mixing dynamics to fluid deformation arising in flow through porous materials. Unlike diffusion and dispersion, which only dissipate chemical gradients, fluid shear and stretching amplify and sustain them. This review explores the role of fluid deformation in governing mixing, chemical reactions, and biological processes in porous media. We begin by highlighting key experimental observations that have improved our understanding of mixing in these systems. We then examine the fundamental concepts, models, and open questions surrounding fluid deformation and mixing in porous media, emphasizing their dependence on material structure, heterogeneity, dimensionality, and transient flow phenomena, as well as their interaction with chemical and biological processes.","PeriodicalId":50754,"journal":{"name":"Annual Review of Fluid Mechanics","volume":"28 1","pages":""},"PeriodicalIF":27.7,"publicationDate":"2025-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145215693","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The Fluid Mechanics of Ocean Microplastics","authors":"Michelle H. DiBenedetto","doi":"10.1146/annurev-fluid-120423-012604","DOIUrl":"https://doi.org/10.1146/annurev-fluid-120423-012604","url":null,"abstract":"Microplastic pollution is now ubiquitous in marine environments, posing risks to ecosystem and human health. In order to assess and mitigate this threat, we require accurate prediction of microplastic fate and transport in the ocean. While progress has been made studying global-scale transport pathways, our models often fall short at smaller scales; processes such as vertical transport, horizontal dispersion, particle transformation, and boundary fluxes (e.g., at beaches and the air–sea interface) remain poorly understood. The difficulty lies in the physical features of plastic particles: namely, near-neutral buoyancy in seawater, finite size, and irregular shape. These complexities are compounded by the multiscale forcing from waves and turbulence near the ocean surface where microplastics tend to reside. This review synthesizes recent advances in the fluid dynamics of marine plastic transport, emphasizing the role of fluid–particle interactions in ocean flows and highlighting outstanding challenges.","PeriodicalId":50754,"journal":{"name":"Annual Review of Fluid Mechanics","volume":"37 1","pages":""},"PeriodicalIF":27.7,"publicationDate":"2025-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145209986","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Laboratory Experiments in Geophysical and Astrophysical Fluid Dynamics","authors":"Michael Le Bars, Daphné Lemasquerier","doi":"10.1146/annurev-fluid-112723-053838","DOIUrl":"https://doi.org/10.1146/annurev-fluid-112723-053838","url":null,"abstract":"Geophysical and astrophysical fluid dynamics (GAFD) is an interdisciplinary field. It encompasses a wide range of fluid systems, from planetary atmospheres and the oceans of Earth and icy moons to the interiors of telluric planets, giant planets, and stars. It also spans vast timescales and space scales. Despite this diversity, GAFD is built on common challenges in fundamental fluid mechanics, requiring a multi-approach strategy that integrates theory, simulations, and experiments to explain observations. This review highlights the role of laboratory experiments in GAFD. We first emphasize recent advances in experimental design, methods, and metrology, including large-scale facilities as well as innovative and analog setups. We then focus on two areas where experiments have driven recent breakthroughs: rotating turbulence and flows involving multiphase and phase-change processes. Finally, we discuss emerging challenges and the potential of outreach experiments to stimulate interest in fluid mechanics among students and the public.","PeriodicalId":50754,"journal":{"name":"Annual Review of Fluid Mechanics","volume":"74 1","pages":""},"PeriodicalIF":27.7,"publicationDate":"2025-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145209974","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Manikandan Mathur, Jithendra Raju Nadimpalli, Eric A. D’Asaro
{"title":"Internal Waves in a Nonuniformly Stratified Ocean","authors":"Manikandan Mathur, Jithendra Raju Nadimpalli, Eric A. D’Asaro","doi":"10.1146/annurev-fluid-100224-110920","DOIUrl":"https://doi.org/10.1146/annurev-fluid-100224-110920","url":null,"abstract":"Internal waves, generated by wind and tides, are ubiquitous in the ocean. Their dissipation and the resulting vertical mixing play an important role in setting the ocean circulation, stratification, and energetics. Ocean models usually parameterize many or all of these effects. The current generation of parameterizations often relies on assumptions of uniform or slowly varying stratification profiles. Here, we review the growing theoretical, modeling, and observational evidence that vertical nonuniformity in the stratification profile can significantly modify the assumed wave dynamics. Linear scattering, wave–wave interactions, and solitary-like internal wave generation in idealized nonuniform stratification profiles are discussed. The nonuniform features in oceanic vertical stratification profiles are characterized, followed by a discussion of the validity of the slowly varying stratification assumption for such profiles. A concerted effort is made to synthesize research in both fluid dynamics and oceanography.","PeriodicalId":50754,"journal":{"name":"Annual Review of Fluid Mechanics","volume":"121 1","pages":""},"PeriodicalIF":27.7,"publicationDate":"2025-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145209973","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Snow Settling in Atmospheric Turbulence","authors":"Michele Guala, Jiarong Hong","doi":"10.1146/annurev-fluid-112823-104356","DOIUrl":"https://doi.org/10.1146/annurev-fluid-112823-104356","url":null,"abstract":"The objective of this contribution is to review more than 80 years of experimental measurements of the settling of snow particles and surrogates in natural and laboratory settings and suggest viable directions for future research. Under the broad category of frozen hydrometeors, snow particles are characterized by a variety of shapes and inertial properties that we broadly refer to as snow morphology attributes and depend on the micrometeorology of the air column, including temperature, relative humidity, wind speed, and turbulence. The uncertainty in the prediction of snow settling velocity is partly due to the significant variability in snow crystal shape, density, and drag properties, as well as the modulating effect of ambient turbulence, which has been observed to affect particle orientation and falling style and enhance or reduce the terminal velocity, as compared to quiescent flow conditions. Because of the complexity of finite-size, nonspherical particles’ interaction with turbulent flows at high Reynolds numbers, we stress the need for simultaneous flow and snow morphology measurements in the field and we review past and current experimental techniques and methodologies.","PeriodicalId":50754,"journal":{"name":"Annual Review of Fluid Mechanics","volume":"114 1","pages":""},"PeriodicalIF":27.7,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145203430","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Marc A. Fardin, Thibaut Divoux, Sungyon Lee, Irmgard Bischofberger
{"title":"Pattern Formation and Instabilities in Particulate Suspensions","authors":"Marc A. Fardin, Thibaut Divoux, Sungyon Lee, Irmgard Bischofberger","doi":"10.1146/annurev-fluid-100224-111041","DOIUrl":"https://doi.org/10.1146/annurev-fluid-100224-111041","url":null,"abstract":"Particulate suspensions, consisting of solid particles dispersed in a fluid, exhibit complex flow behaviors influenced by multiple factors, including particle interactions, concentration gradients, and external forces. Suspensions play an important role in diverse processes, from sediment transport to food processing, and display instabilities triggered by shear-driven effects, frictional interactions, and viscous forces. These instabilities can often be understood by identifying the key mechanical quantities that govern the dynamics. Following hydrodynamic tradition, such mechanics can be characterized by dimensionless numbers, which encapsulate the interplay between geometric, kinematic, and mechanical factors. Many of these numbers represent competitions between opposing pairs of mechanical quantities, which we discuss in detail while also considering a few phenomena that require more complex combinations. By emphasizing the underlying mechanical principles, this review provides a perspective for understanding pattern formation and flow instabilities in confined particulate suspensions across different flow geometries.","PeriodicalId":50754,"journal":{"name":"Annual Review of Fluid Mechanics","volume":"101 1","pages":""},"PeriodicalIF":27.7,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145203508","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Filtration in Pore Networks","authors":"Linda J. Cummings, Binan Gu, Lou Kondic","doi":"10.1146/annurev-fluid-112723-054759","DOIUrl":"https://doi.org/10.1146/annurev-fluid-112723-054759","url":null,"abstract":"In liquid filtration, a particulate-laden feed solution is passed through a porous material (the filter), often a membrane, designed to capture the particulate matter. Usually, the filter has a complex interior structure of interconnected pores, through which the feed passes, and in many cases of interest, it may be reasonable to approximate this interior structure as a network of interconnected tubes. This idea, which dates back about 70 years, greatly simplifies the modeling and simulation of the filtration process. In this article, we review the use of networks as a framework for modeling and investigating filtration, describing the key ideas and milestones. We also discuss some promising areas for future development of this field, particularly concerning the design of next-generation filters.","PeriodicalId":50754,"journal":{"name":"Annual Review of Fluid Mechanics","volume":"32 1","pages":""},"PeriodicalIF":27.7,"publicationDate":"2025-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145195519","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Urban Fluid Mechanics, Resilience, and Sustainability","authors":"Catherine Gorlé","doi":"10.1146/annurev-fluid-100224-111114","DOIUrl":"https://doi.org/10.1146/annurev-fluid-100224-111114","url":null,"abstract":"This review first examines how urban wind flow impacts the sustainability and resilience of cities and identifies the three main challenges in predictive modeling of urban flows: the complexity of the flow physics, the variability and uncertainty in the flow conditions, and the diversity and multiscale nature of urban geometries. To review the complexity of the flow physics, the typical flow patterns observed in canonical urban flows are summarized, and related modeling challenges and opportunities in both wind tunnel experiments and simulations are highlighted. Next, opportunities to predict realistic urban flows by addressing the other challenges are explored through the lens of a modeling framework with uncertainty quantification. The important role of field measurements, supporting the more accurate characterization of uncertainties in the flow conditions, as well as enabling validation with real-world data, is emphasized. The review concludes with two specific examples that demonstrate how integrated use of field measurements and computational models can improve the understanding and modeling of real urban flows to ultimately support sustainable development goals for urban areas.","PeriodicalId":50754,"journal":{"name":"Annual Review of Fluid Mechanics","volume":"5 1","pages":""},"PeriodicalIF":27.7,"publicationDate":"2025-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145188866","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}