Fluid Mechanics of Blood Cells and Vesicles Squeezing Through Narrow Constrictions

IF 30.2 1区 工程技术 Q1 MECHANICS
Zhangli Peng, Annie Viallat, Yuan-Nan Young
{"title":"Fluid Mechanics of Blood Cells and Vesicles Squeezing Through Narrow Constrictions","authors":"Zhangli Peng, Annie Viallat, Yuan-Nan Young","doi":"10.1146/annurev-fluid-112723-052727","DOIUrl":null,"url":null,"abstract":"The squeezing of blood cells and vesicles through narrow constrictions, such as splenic slits, pulmonary capillaries, vascular endothelial gaps, and microfluidic channels, is crucial in physiology and biotechnology, with fluid mechanics playing a central role. The diverse geometries of these constrictions, the associated flow conditions, and the unique mechanical properties of cells and vesicles create a rich subject in fluid mechanics emerging from nonlinear dynamics of fluid–structure interactions involving both lubrication and Marangoni flows. Advances in microfluidics, video microscopy, and computational modeling have enabled investigations into these complex processes. This review surveys the key features and approaches, recent prominent studies, and unresolved challenges related to these processes, offering insights for researchers across biomechanics, biomedical engineering, biological physics, hematology, physiology, and applied mathematics.","PeriodicalId":50754,"journal":{"name":"Annual Review of Fluid Mechanics","volume":"99 1","pages":""},"PeriodicalIF":30.2000,"publicationDate":"2025-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Fluid Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1146/annurev-fluid-112723-052727","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

The squeezing of blood cells and vesicles through narrow constrictions, such as splenic slits, pulmonary capillaries, vascular endothelial gaps, and microfluidic channels, is crucial in physiology and biotechnology, with fluid mechanics playing a central role. The diverse geometries of these constrictions, the associated flow conditions, and the unique mechanical properties of cells and vesicles create a rich subject in fluid mechanics emerging from nonlinear dynamics of fluid–structure interactions involving both lubrication and Marangoni flows. Advances in microfluidics, video microscopy, and computational modeling have enabled investigations into these complex processes. This review surveys the key features and approaches, recent prominent studies, and unresolved challenges related to these processes, offering insights for researchers across biomechanics, biomedical engineering, biological physics, hematology, physiology, and applied mathematics.
血细胞和囊泡通过狭窄收缩挤压的流体力学
血液细胞和囊泡通过狭窄的收缩,如脾缝、肺毛细血管、血管内皮间隙和微流体通道的挤压,在生理学和生物技术中是至关重要的,流体力学起着核心作用。这些收缩的不同几何形状,相关的流动条件,以及细胞和囊泡的独特力学特性,为流体力学创造了一个丰富的学科,从涉及润滑和马兰戈尼流动的流固相互作用的非线性动力学中涌现出来。微流体学、视频显微镜和计算模型的进步使得对这些复杂过程的研究成为可能。本文综述了与这些过程相关的主要特征和方法、最近的突出研究和未解决的挑战,为生物力学、生物医学工程、生物物理学、血液学、生理学和应用数学等领域的研究人员提供了见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
54.00
自引率
0.40%
发文量
43
期刊介绍: The Annual Review of Fluid Mechanics is a longstanding publication dating back to 1969 that explores noteworthy advancements in the field of fluid mechanics. Its comprehensive coverage includes various topics such as the historical and foundational aspects of fluid mechanics, non-newtonian fluids and rheology, both incompressible and compressible fluids, plasma flow, flow stability, multi-phase flows, heat and species transport, fluid flow control, combustion, turbulence, shock waves, and explosions. Recently, an important development has occurred for this journal. It has transitioned from a gated access model to an open access platform through Annual Reviews' innovative Subscribe to Open program. Consequently, all articles published in the current volume are now freely accessible to the public under a Creative Commons Attribution (CC BY) license. This new approach not only ensures broader dissemination of research in fluid mechanics but also fosters a more inclusive and collaborative scientific community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信