{"title":"Fluid Mechanics Challenges in Direct-Ink-Writing Additive Manufacturing","authors":"Alban Sauret, Tyler R. Ray, Brett G. Compton","doi":"10.1146/annurev-fluid-100224-111013","DOIUrl":null,"url":null,"abstract":"Direct-ink writing (DIW) has rapidly become a versatile 3D fabrication method due to its ability to deposit a wide range of complex fluids into customizable 3D geometries. This review highlights key fundamental fluid mechanics and soft matter challenges across the different stages of the DIW printing process. The rheology of fluids and suspensions governs the flow behavior through narrow nozzles, posing questions about extrudability, confined flow dynamics, and clogging mechanisms. Downstream, the formation and deposition of extruded filaments involve extensional flows and potential instabilities, while postdeposition dynamics introduces complexities related to yield stress and structural stability. These stages are inherently interdependent, as optimizing material composition without considering filament stability risks compromising the final structure. As DIW applications expand through advanced ink formulations, developing fundamental fluid mechanics frameworks is essential to replace trial-and-error approaches with predictive design methodologies to enable more precise control over and reliability of the printing process.","PeriodicalId":50754,"journal":{"name":"Annual Review of Fluid Mechanics","volume":"7 1","pages":""},"PeriodicalIF":30.2000,"publicationDate":"2025-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Fluid Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1146/annurev-fluid-100224-111013","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
Direct-ink writing (DIW) has rapidly become a versatile 3D fabrication method due to its ability to deposit a wide range of complex fluids into customizable 3D geometries. This review highlights key fundamental fluid mechanics and soft matter challenges across the different stages of the DIW printing process. The rheology of fluids and suspensions governs the flow behavior through narrow nozzles, posing questions about extrudability, confined flow dynamics, and clogging mechanisms. Downstream, the formation and deposition of extruded filaments involve extensional flows and potential instabilities, while postdeposition dynamics introduces complexities related to yield stress and structural stability. These stages are inherently interdependent, as optimizing material composition without considering filament stability risks compromising the final structure. As DIW applications expand through advanced ink formulations, developing fundamental fluid mechanics frameworks is essential to replace trial-and-error approaches with predictive design methodologies to enable more precise control over and reliability of the printing process.
期刊介绍:
The Annual Review of Fluid Mechanics is a longstanding publication dating back to 1969 that explores noteworthy advancements in the field of fluid mechanics. Its comprehensive coverage includes various topics such as the historical and foundational aspects of fluid mechanics, non-newtonian fluids and rheology, both incompressible and compressible fluids, plasma flow, flow stability, multi-phase flows, heat and species transport, fluid flow control, combustion, turbulence, shock waves, and explosions.
Recently, an important development has occurred for this journal. It has transitioned from a gated access model to an open access platform through Annual Reviews' innovative Subscribe to Open program. Consequently, all articles published in the current volume are now freely accessible to the public under a Creative Commons Attribution (CC BY) license.
This new approach not only ensures broader dissemination of research in fluid mechanics but also fosters a more inclusive and collaborative scientific community.