Marc A. Fardin, Thibaut Divoux, Sungyon Lee, Irmgard Bischofberger
{"title":"Pattern Formation and Instabilities in Particulate Suspensions","authors":"Marc A. Fardin, Thibaut Divoux, Sungyon Lee, Irmgard Bischofberger","doi":"10.1146/annurev-fluid-100224-111041","DOIUrl":null,"url":null,"abstract":"Particulate suspensions, consisting of solid particles dispersed in a fluid, exhibit complex flow behaviors influenced by multiple factors, including particle interactions, concentration gradients, and external forces. Suspensions play an important role in diverse processes, from sediment transport to food processing, and display instabilities triggered by shear-driven effects, frictional interactions, and viscous forces. These instabilities can often be understood by identifying the key mechanical quantities that govern the dynamics. Following hydrodynamic tradition, such mechanics can be characterized by dimensionless numbers, which encapsulate the interplay between geometric, kinematic, and mechanical factors. Many of these numbers represent competitions between opposing pairs of mechanical quantities, which we discuss in detail while also considering a few phenomena that require more complex combinations. By emphasizing the underlying mechanical principles, this review provides a perspective for understanding pattern formation and flow instabilities in confined particulate suspensions across different flow geometries.","PeriodicalId":50754,"journal":{"name":"Annual Review of Fluid Mechanics","volume":"101 1","pages":""},"PeriodicalIF":30.2000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Fluid Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1146/annurev-fluid-100224-111041","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
Particulate suspensions, consisting of solid particles dispersed in a fluid, exhibit complex flow behaviors influenced by multiple factors, including particle interactions, concentration gradients, and external forces. Suspensions play an important role in diverse processes, from sediment transport to food processing, and display instabilities triggered by shear-driven effects, frictional interactions, and viscous forces. These instabilities can often be understood by identifying the key mechanical quantities that govern the dynamics. Following hydrodynamic tradition, such mechanics can be characterized by dimensionless numbers, which encapsulate the interplay between geometric, kinematic, and mechanical factors. Many of these numbers represent competitions between opposing pairs of mechanical quantities, which we discuss in detail while also considering a few phenomena that require more complex combinations. By emphasizing the underlying mechanical principles, this review provides a perspective for understanding pattern formation and flow instabilities in confined particulate suspensions across different flow geometries.
期刊介绍:
The Annual Review of Fluid Mechanics is a longstanding publication dating back to 1969 that explores noteworthy advancements in the field of fluid mechanics. Its comprehensive coverage includes various topics such as the historical and foundational aspects of fluid mechanics, non-newtonian fluids and rheology, both incompressible and compressible fluids, plasma flow, flow stability, multi-phase flows, heat and species transport, fluid flow control, combustion, turbulence, shock waves, and explosions.
Recently, an important development has occurred for this journal. It has transitioned from a gated access model to an open access platform through Annual Reviews' innovative Subscribe to Open program. Consequently, all articles published in the current volume are now freely accessible to the public under a Creative Commons Attribution (CC BY) license.
This new approach not only ensures broader dissemination of research in fluid mechanics but also fosters a more inclusive and collaborative scientific community.