Laboratory Experiments in Geophysical and Astrophysical Fluid Dynamics

IF 30.2 1区 工程技术 Q1 MECHANICS
Michael Le Bars, Daphné Lemasquerier
{"title":"Laboratory Experiments in Geophysical and Astrophysical Fluid Dynamics","authors":"Michael Le Bars, Daphné Lemasquerier","doi":"10.1146/annurev-fluid-112723-053838","DOIUrl":null,"url":null,"abstract":"Geophysical and astrophysical fluid dynamics (GAFD) is an interdisciplinary field. It encompasses a wide range of fluid systems, from planetary atmospheres and the oceans of Earth and icy moons to the interiors of telluric planets, giant planets, and stars. It also spans vast timescales and space scales. Despite this diversity, GAFD is built on common challenges in fundamental fluid mechanics, requiring a multi-approach strategy that integrates theory, simulations, and experiments to explain observations. This review highlights the role of laboratory experiments in GAFD. We first emphasize recent advances in experimental design, methods, and metrology, including large-scale facilities as well as innovative and analog setups. We then focus on two areas where experiments have driven recent breakthroughs: rotating turbulence and flows involving multiphase and phase-change processes. Finally, we discuss emerging challenges and the potential of outreach experiments to stimulate interest in fluid mechanics among students and the public.","PeriodicalId":50754,"journal":{"name":"Annual Review of Fluid Mechanics","volume":"74 1","pages":""},"PeriodicalIF":30.2000,"publicationDate":"2025-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Fluid Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1146/annurev-fluid-112723-053838","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

Geophysical and astrophysical fluid dynamics (GAFD) is an interdisciplinary field. It encompasses a wide range of fluid systems, from planetary atmospheres and the oceans of Earth and icy moons to the interiors of telluric planets, giant planets, and stars. It also spans vast timescales and space scales. Despite this diversity, GAFD is built on common challenges in fundamental fluid mechanics, requiring a multi-approach strategy that integrates theory, simulations, and experiments to explain observations. This review highlights the role of laboratory experiments in GAFD. We first emphasize recent advances in experimental design, methods, and metrology, including large-scale facilities as well as innovative and analog setups. We then focus on two areas where experiments have driven recent breakthroughs: rotating turbulence and flows involving multiphase and phase-change processes. Finally, we discuss emerging challenges and the potential of outreach experiments to stimulate interest in fluid mechanics among students and the public.
地球物理和天体物理流体动力学实验室实验
地球物理与天体物理流体动力学(GAFD)是一个交叉学科。它涵盖了广泛的流体系统,从行星大气、地球的海洋和冰冷的卫星,到大地行星、巨行星和恒星的内部。它还跨越了巨大的时间尺度和空间尺度。尽管存在这种多样性,但GAFD是建立在基础流体力学中的共同挑战之上的,需要将理论、模拟和实验相结合的多方法策略来解释观察结果。本文综述了实验室实验在GAFD中的作用。我们首先强调在实验设计、方法和计量方面的最新进展,包括大型设施以及创新和模拟设置。然后,我们将重点放在两个实验已经取得突破的领域:旋转湍流和涉及多相和相变过程的流动。最后,我们讨论了新出现的挑战和扩展实验的潜力,以激发学生和公众对流体力学的兴趣。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
54.00
自引率
0.40%
发文量
43
期刊介绍: The Annual Review of Fluid Mechanics is a longstanding publication dating back to 1969 that explores noteworthy advancements in the field of fluid mechanics. Its comprehensive coverage includes various topics such as the historical and foundational aspects of fluid mechanics, non-newtonian fluids and rheology, both incompressible and compressible fluids, plasma flow, flow stability, multi-phase flows, heat and species transport, fluid flow control, combustion, turbulence, shock waves, and explosions. Recently, an important development has occurred for this journal. It has transitioned from a gated access model to an open access platform through Annual Reviews' innovative Subscribe to Open program. Consequently, all articles published in the current volume are now freely accessible to the public under a Creative Commons Attribution (CC BY) license. This new approach not only ensures broader dissemination of research in fluid mechanics but also fosters a more inclusive and collaborative scientific community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信