{"title":"Fluid Deformation and Mixing in Porous Media as Drivers for Chemical and Biological Processes","authors":"Tanguy Le Borgne, Joris Heyman","doi":"10.1146/annurev-fluid-112723-051940","DOIUrl":null,"url":null,"abstract":"Porous media flows are generally viewed as inefficient mixers, where solutes may be dispersed yet poorly mixed, making mixing a critical limiting factor for a wide range of processes. The complexity and opacity of porous structures have long made these dynamics difficult to observe. With emerging experimental techniques, concepts and models of mixing in porous media are rapidly evolving. Recent advances link mixing dynamics to fluid deformation arising in flow through porous materials. Unlike diffusion and dispersion, which only dissipate chemical gradients, fluid shear and stretching amplify and sustain them. This review explores the role of fluid deformation in governing mixing, chemical reactions, and biological processes in porous media. We begin by highlighting key experimental observations that have improved our understanding of mixing in these systems. We then examine the fundamental concepts, models, and open questions surrounding fluid deformation and mixing in porous media, emphasizing their dependence on material structure, heterogeneity, dimensionality, and transient flow phenomena, as well as their interaction with chemical and biological processes.","PeriodicalId":50754,"journal":{"name":"Annual Review of Fluid Mechanics","volume":"28 1","pages":""},"PeriodicalIF":30.2000,"publicationDate":"2025-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Fluid Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1146/annurev-fluid-112723-051940","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
Porous media flows are generally viewed as inefficient mixers, where solutes may be dispersed yet poorly mixed, making mixing a critical limiting factor for a wide range of processes. The complexity and opacity of porous structures have long made these dynamics difficult to observe. With emerging experimental techniques, concepts and models of mixing in porous media are rapidly evolving. Recent advances link mixing dynamics to fluid deformation arising in flow through porous materials. Unlike diffusion and dispersion, which only dissipate chemical gradients, fluid shear and stretching amplify and sustain them. This review explores the role of fluid deformation in governing mixing, chemical reactions, and biological processes in porous media. We begin by highlighting key experimental observations that have improved our understanding of mixing in these systems. We then examine the fundamental concepts, models, and open questions surrounding fluid deformation and mixing in porous media, emphasizing their dependence on material structure, heterogeneity, dimensionality, and transient flow phenomena, as well as their interaction with chemical and biological processes.
期刊介绍:
The Annual Review of Fluid Mechanics is a longstanding publication dating back to 1969 that explores noteworthy advancements in the field of fluid mechanics. Its comprehensive coverage includes various topics such as the historical and foundational aspects of fluid mechanics, non-newtonian fluids and rheology, both incompressible and compressible fluids, plasma flow, flow stability, multi-phase flows, heat and species transport, fluid flow control, combustion, turbulence, shock waves, and explosions.
Recently, an important development has occurred for this journal. It has transitioned from a gated access model to an open access platform through Annual Reviews' innovative Subscribe to Open program. Consequently, all articles published in the current volume are now freely accessible to the public under a Creative Commons Attribution (CC BY) license.
This new approach not only ensures broader dissemination of research in fluid mechanics but also fosters a more inclusive and collaborative scientific community.