{"title":"Snow Settling in Atmospheric Turbulence","authors":"Michele Guala, Jiarong Hong","doi":"10.1146/annurev-fluid-112823-104356","DOIUrl":null,"url":null,"abstract":"The objective of this contribution is to review more than 80 years of experimental measurements of the settling of snow particles and surrogates in natural and laboratory settings and suggest viable directions for future research. Under the broad category of frozen hydrometeors, snow particles are characterized by a variety of shapes and inertial properties that we broadly refer to as snow morphology attributes and depend on the micrometeorology of the air column, including temperature, relative humidity, wind speed, and turbulence. The uncertainty in the prediction of snow settling velocity is partly due to the significant variability in snow crystal shape, density, and drag properties, as well as the modulating effect of ambient turbulence, which has been observed to affect particle orientation and falling style and enhance or reduce the terminal velocity, as compared to quiescent flow conditions. Because of the complexity of finite-size, nonspherical particles’ interaction with turbulent flows at high Reynolds numbers, we stress the need for simultaneous flow and snow morphology measurements in the field and we review past and current experimental techniques and methodologies.","PeriodicalId":50754,"journal":{"name":"Annual Review of Fluid Mechanics","volume":"114 1","pages":""},"PeriodicalIF":30.2000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Fluid Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1146/annurev-fluid-112823-104356","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
The objective of this contribution is to review more than 80 years of experimental measurements of the settling of snow particles and surrogates in natural and laboratory settings and suggest viable directions for future research. Under the broad category of frozen hydrometeors, snow particles are characterized by a variety of shapes and inertial properties that we broadly refer to as snow morphology attributes and depend on the micrometeorology of the air column, including temperature, relative humidity, wind speed, and turbulence. The uncertainty in the prediction of snow settling velocity is partly due to the significant variability in snow crystal shape, density, and drag properties, as well as the modulating effect of ambient turbulence, which has been observed to affect particle orientation and falling style and enhance or reduce the terminal velocity, as compared to quiescent flow conditions. Because of the complexity of finite-size, nonspherical particles’ interaction with turbulent flows at high Reynolds numbers, we stress the need for simultaneous flow and snow morphology measurements in the field and we review past and current experimental techniques and methodologies.
期刊介绍:
The Annual Review of Fluid Mechanics is a longstanding publication dating back to 1969 that explores noteworthy advancements in the field of fluid mechanics. Its comprehensive coverage includes various topics such as the historical and foundational aspects of fluid mechanics, non-newtonian fluids and rheology, both incompressible and compressible fluids, plasma flow, flow stability, multi-phase flows, heat and species transport, fluid flow control, combustion, turbulence, shock waves, and explosions.
Recently, an important development has occurred for this journal. It has transitioned from a gated access model to an open access platform through Annual Reviews' innovative Subscribe to Open program. Consequently, all articles published in the current volume are now freely accessible to the public under a Creative Commons Attribution (CC BY) license.
This new approach not only ensures broader dissemination of research in fluid mechanics but also fosters a more inclusive and collaborative scientific community.