非均匀分层海洋中的内波

IF 30.2 1区 工程技术 Q1 MECHANICS
Manikandan Mathur, Jithendra Raju Nadimpalli, Eric A. D’Asaro
{"title":"非均匀分层海洋中的内波","authors":"Manikandan Mathur, Jithendra Raju Nadimpalli, Eric A. D’Asaro","doi":"10.1146/annurev-fluid-100224-110920","DOIUrl":null,"url":null,"abstract":"Internal waves, generated by wind and tides, are ubiquitous in the ocean. Their dissipation and the resulting vertical mixing play an important role in setting the ocean circulation, stratification, and energetics. Ocean models usually parameterize many or all of these effects. The current generation of parameterizations often relies on assumptions of uniform or slowly varying stratification profiles. Here, we review the growing theoretical, modeling, and observational evidence that vertical nonuniformity in the stratification profile can significantly modify the assumed wave dynamics. Linear scattering, wave–wave interactions, and solitary-like internal wave generation in idealized nonuniform stratification profiles are discussed. The nonuniform features in oceanic vertical stratification profiles are characterized, followed by a discussion of the validity of the slowly varying stratification assumption for such profiles. A concerted effort is made to synthesize research in both fluid dynamics and oceanography.","PeriodicalId":50754,"journal":{"name":"Annual Review of Fluid Mechanics","volume":"121 1","pages":""},"PeriodicalIF":30.2000,"publicationDate":"2025-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Internal Waves in a Nonuniformly Stratified Ocean\",\"authors\":\"Manikandan Mathur, Jithendra Raju Nadimpalli, Eric A. D’Asaro\",\"doi\":\"10.1146/annurev-fluid-100224-110920\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Internal waves, generated by wind and tides, are ubiquitous in the ocean. Their dissipation and the resulting vertical mixing play an important role in setting the ocean circulation, stratification, and energetics. Ocean models usually parameterize many or all of these effects. The current generation of parameterizations often relies on assumptions of uniform or slowly varying stratification profiles. Here, we review the growing theoretical, modeling, and observational evidence that vertical nonuniformity in the stratification profile can significantly modify the assumed wave dynamics. Linear scattering, wave–wave interactions, and solitary-like internal wave generation in idealized nonuniform stratification profiles are discussed. The nonuniform features in oceanic vertical stratification profiles are characterized, followed by a discussion of the validity of the slowly varying stratification assumption for such profiles. A concerted effort is made to synthesize research in both fluid dynamics and oceanography.\",\"PeriodicalId\":50754,\"journal\":{\"name\":\"Annual Review of Fluid Mechanics\",\"volume\":\"121 1\",\"pages\":\"\"},\"PeriodicalIF\":30.2000,\"publicationDate\":\"2025-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual Review of Fluid Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1146/annurev-fluid-100224-110920\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Fluid Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1146/annurev-fluid-100224-110920","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

由风和潮汐产生的内波在海洋中无处不在。它们的消散和由此产生的垂直混合在确定海洋环流、分层和能量学方面起着重要作用。海洋模式通常将许多或所有这些影响参数化。当前一代的参数化常常依赖于均匀或缓慢变化的分层剖面的假设。在这里,我们回顾了越来越多的理论、模拟和观测证据,表明分层剖面的垂直不均匀性可以显著地改变假设的波浪动力学。讨论了理想非均匀分层剖面中的线性散射、波-波相互作用和类孤立内波的产生。本文描述了海洋垂直分层剖面的非均匀特征,并讨论了这种剖面的缓慢变化分层假设的有效性。在流体动力学和海洋学的综合研究方面作出了一致的努力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Internal Waves in a Nonuniformly Stratified Ocean
Internal waves, generated by wind and tides, are ubiquitous in the ocean. Their dissipation and the resulting vertical mixing play an important role in setting the ocean circulation, stratification, and energetics. Ocean models usually parameterize many or all of these effects. The current generation of parameterizations often relies on assumptions of uniform or slowly varying stratification profiles. Here, we review the growing theoretical, modeling, and observational evidence that vertical nonuniformity in the stratification profile can significantly modify the assumed wave dynamics. Linear scattering, wave–wave interactions, and solitary-like internal wave generation in idealized nonuniform stratification profiles are discussed. The nonuniform features in oceanic vertical stratification profiles are characterized, followed by a discussion of the validity of the slowly varying stratification assumption for such profiles. A concerted effort is made to synthesize research in both fluid dynamics and oceanography.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
54.00
自引率
0.40%
发文量
43
期刊介绍: The Annual Review of Fluid Mechanics is a longstanding publication dating back to 1969 that explores noteworthy advancements in the field of fluid mechanics. Its comprehensive coverage includes various topics such as the historical and foundational aspects of fluid mechanics, non-newtonian fluids and rheology, both incompressible and compressible fluids, plasma flow, flow stability, multi-phase flows, heat and species transport, fluid flow control, combustion, turbulence, shock waves, and explosions. Recently, an important development has occurred for this journal. It has transitioned from a gated access model to an open access platform through Annual Reviews' innovative Subscribe to Open program. Consequently, all articles published in the current volume are now freely accessible to the public under a Creative Commons Attribution (CC BY) license. This new approach not only ensures broader dissemination of research in fluid mechanics but also fosters a more inclusive and collaborative scientific community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信