Manikandan Mathur, Jithendra Raju Nadimpalli, Eric A. D’Asaro
{"title":"非均匀分层海洋中的内波","authors":"Manikandan Mathur, Jithendra Raju Nadimpalli, Eric A. D’Asaro","doi":"10.1146/annurev-fluid-100224-110920","DOIUrl":null,"url":null,"abstract":"Internal waves, generated by wind and tides, are ubiquitous in the ocean. Their dissipation and the resulting vertical mixing play an important role in setting the ocean circulation, stratification, and energetics. Ocean models usually parameterize many or all of these effects. The current generation of parameterizations often relies on assumptions of uniform or slowly varying stratification profiles. Here, we review the growing theoretical, modeling, and observational evidence that vertical nonuniformity in the stratification profile can significantly modify the assumed wave dynamics. Linear scattering, wave–wave interactions, and solitary-like internal wave generation in idealized nonuniform stratification profiles are discussed. The nonuniform features in oceanic vertical stratification profiles are characterized, followed by a discussion of the validity of the slowly varying stratification assumption for such profiles. A concerted effort is made to synthesize research in both fluid dynamics and oceanography.","PeriodicalId":50754,"journal":{"name":"Annual Review of Fluid Mechanics","volume":"121 1","pages":""},"PeriodicalIF":30.2000,"publicationDate":"2025-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Internal Waves in a Nonuniformly Stratified Ocean\",\"authors\":\"Manikandan Mathur, Jithendra Raju Nadimpalli, Eric A. D’Asaro\",\"doi\":\"10.1146/annurev-fluid-100224-110920\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Internal waves, generated by wind and tides, are ubiquitous in the ocean. Their dissipation and the resulting vertical mixing play an important role in setting the ocean circulation, stratification, and energetics. Ocean models usually parameterize many or all of these effects. The current generation of parameterizations often relies on assumptions of uniform or slowly varying stratification profiles. Here, we review the growing theoretical, modeling, and observational evidence that vertical nonuniformity in the stratification profile can significantly modify the assumed wave dynamics. Linear scattering, wave–wave interactions, and solitary-like internal wave generation in idealized nonuniform stratification profiles are discussed. The nonuniform features in oceanic vertical stratification profiles are characterized, followed by a discussion of the validity of the slowly varying stratification assumption for such profiles. A concerted effort is made to synthesize research in both fluid dynamics and oceanography.\",\"PeriodicalId\":50754,\"journal\":{\"name\":\"Annual Review of Fluid Mechanics\",\"volume\":\"121 1\",\"pages\":\"\"},\"PeriodicalIF\":30.2000,\"publicationDate\":\"2025-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual Review of Fluid Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1146/annurev-fluid-100224-110920\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Fluid Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1146/annurev-fluid-100224-110920","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
Internal waves, generated by wind and tides, are ubiquitous in the ocean. Their dissipation and the resulting vertical mixing play an important role in setting the ocean circulation, stratification, and energetics. Ocean models usually parameterize many or all of these effects. The current generation of parameterizations often relies on assumptions of uniform or slowly varying stratification profiles. Here, we review the growing theoretical, modeling, and observational evidence that vertical nonuniformity in the stratification profile can significantly modify the assumed wave dynamics. Linear scattering, wave–wave interactions, and solitary-like internal wave generation in idealized nonuniform stratification profiles are discussed. The nonuniform features in oceanic vertical stratification profiles are characterized, followed by a discussion of the validity of the slowly varying stratification assumption for such profiles. A concerted effort is made to synthesize research in both fluid dynamics and oceanography.
期刊介绍:
The Annual Review of Fluid Mechanics is a longstanding publication dating back to 1969 that explores noteworthy advancements in the field of fluid mechanics. Its comprehensive coverage includes various topics such as the historical and foundational aspects of fluid mechanics, non-newtonian fluids and rheology, both incompressible and compressible fluids, plasma flow, flow stability, multi-phase flows, heat and species transport, fluid flow control, combustion, turbulence, shock waves, and explosions.
Recently, an important development has occurred for this journal. It has transitioned from a gated access model to an open access platform through Annual Reviews' innovative Subscribe to Open program. Consequently, all articles published in the current volume are now freely accessible to the public under a Creative Commons Attribution (CC BY) license.
This new approach not only ensures broader dissemination of research in fluid mechanics but also fosters a more inclusive and collaborative scientific community.