Discrete Applied Mathematics最新文献

筛选
英文 中文
On partitioning a bipartite graph into cycles and degenerated cycles 二部图的环与退化环的划分
IF 1 3区 数学
Discrete Applied Mathematics Pub Date : 2025-09-17 DOI: 10.1016/j.dam.2025.09.003
Shuya Chiba , Koshin Yoshida
{"title":"On partitioning a bipartite graph into cycles and degenerated cycles","authors":"Shuya Chiba ,&nbsp;Koshin Yoshida","doi":"10.1016/j.dam.2025.09.003","DOIUrl":"10.1016/j.dam.2025.09.003","url":null,"abstract":"<div><div>For a bipartite graph <span><math><mi>G</mi></math></span>, let <span><math><mrow><msub><mrow><mi>σ</mi></mrow><mrow><mn>1</mn><mo>,</mo><mn>1</mn></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> be the minimum degree sum of two non-adjacent vertices in different partite sets of <span><math><mi>G</mi></math></span>. We prove the following result: If <span><math><mi>G</mi></math></span> is a balanced bipartite graph of order <span><math><mrow><mn>2</mn><mi>n</mi><mo>≥</mo><mi>k</mi></mrow></math></span>, and if <span><math><mrow><msub><mrow><mi>σ</mi></mrow><mrow><mn>1</mn><mo>,</mo><mn>1</mn></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≥</mo><mi>n</mi><mo>−</mo><mfenced><mrow><mrow><mo>(</mo><mi>k</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow><mo>/</mo><mn>2</mn></mrow></mfenced><mo>+</mo><mn>1</mn></mrow></math></span>, then one of the following (i)–(iv) holds: (i) <span><math><mi>G</mi></math></span> contains <span><math><mi>k</mi></math></span> vertex-disjoint subgraphs <span><math><mrow><msub><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>H</mi></mrow><mrow><mi>k</mi></mrow></msub></mrow></math></span> such that <span><math><mrow><msub><mrow><mo>⋃</mo></mrow><mrow><mn>1</mn><mo>≤</mo><mi>i</mi><mo>≤</mo><mi>k</mi></mrow></msub><mi>V</mi><mrow><mo>(</mo><msub><mrow><mi>H</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>)</mo></mrow><mo>=</mo><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> and for each <span><math><mi>i</mi></math></span>, <span><math><mrow><mn>1</mn><mo>≤</mo><mi>i</mi><mo>≤</mo><mi>k</mi></mrow></math></span>, <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> is a cycle or <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> or <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>; (ii) <span><math><mrow><mi>G</mi><mo>≅</mo><msub><mrow><mi>C</mi></mrow><mrow><mn>6</mn></mrow></msub></mrow></math></span> and <span><math><mrow><mi>k</mi><mo>=</mo><mn>2</mn></mrow></math></span>; (iii) <span><math><mrow><mi>G</mi><mo>≅</mo><msub><mrow><mi>C</mi></mrow><mrow><mn>8</mn></mrow></msub></mrow></math></span> and <span><math><mrow><mi>k</mi><mo>=</mo><mn>2</mn><mo>,</mo><mn>3</mn></mrow></math></span>; (iv) <span><math><mrow><mi>G</mi><mo>≅</mo><msub><mrow><mi>C</mi></mrow><mrow><mn>10</mn></mrow></msub></mrow></math></span> and <span><math><mrow><mi>k</mi><mo>=</mo><mn>4</mn></mrow></math></span>. This result is a bipartite graph version of the result of Enomoto and Li (2004). We actually prove a stronger result which gives us control on the number of cycles in the <span><math><mi>k</mi></math></span> vertex-disjoint subgraphs of (i).</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"378 ","pages":"Pages 635-646"},"PeriodicalIF":1.0,"publicationDate":"2025-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145105020","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cover numbers by certain graph families 覆盖数的某些图族
IF 1 3区 数学
Discrete Applied Mathematics Pub Date : 2025-09-17 DOI: 10.1016/j.dam.2025.09.009
Márton Marits
{"title":"Cover numbers by certain graph families","authors":"Márton Marits","doi":"10.1016/j.dam.2025.09.009","DOIUrl":"10.1016/j.dam.2025.09.009","url":null,"abstract":"<div><div>We define the <em>cover number</em> of a graph <span><math><mi>G</mi></math></span> by a graph class <span><math><mi>P</mi></math></span> as the minimum number of graphs of class <span><math><mi>P</mi></math></span> required to cover the edge set of <span><math><mi>G</mi></math></span>. Taking inspiration from a paper by Harary et al. (1977), we find an exact formula for the cover number by the graph classes <span><math><mrow><mo>{</mo><mi>G</mi><mo>∣</mo><mi>χ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≤</mo><mi>f</mi><mrow><mo>(</mo><mi>ω</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>)</mo></mrow><mo>}</mo></mrow></math></span> for all non-decreasing functions <span><math><mi>f</mi></math></span>.</div><div>After this, we establish a chain of inequalities between five cover numbers, the one by the class <span><math><mrow><mo>{</mo><mi>G</mi><mo>∣</mo><mi>χ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>=</mo><mi>ω</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>}</mo></mrow></math></span>, by the class of perfect graphs, generalized split graphs, co-unipolar graphs and finally the cover number by bipartite graphs. We prove that at each inequality, the difference between the two sides can grow arbitrarily large. We also prove that the cover number by unipolar graphs cannot be expressed in terms of the chromatic or the clique number.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"379 ","pages":"Pages 400-404"},"PeriodicalIF":1.0,"publicationDate":"2025-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145105085","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the tractability of defensive alliance problem 论防御联盟问题的可追溯性
IF 1 3区 数学
Discrete Applied Mathematics Pub Date : 2025-09-17 DOI: 10.1016/j.dam.2025.09.008
Sangam Balchandar Reddy, Anjeneya Swami Kare
{"title":"On the tractability of defensive alliance problem","authors":"Sangam Balchandar Reddy,&nbsp;Anjeneya Swami Kare","doi":"10.1016/j.dam.2025.09.008","DOIUrl":"10.1016/j.dam.2025.09.008","url":null,"abstract":"<div><div>Given a graph <span><math><mrow><mi>G</mi><mo>=</mo><mrow><mo>(</mo><mi>V</mi><mo>,</mo><mi>E</mi><mo>)</mo></mrow></mrow></math></span>, a non-empty set <span><math><mrow><mi>S</mi><mo>⊆</mo><mi>V</mi></mrow></math></span> is a defensive alliance if, for every vertex <span><math><mrow><mi>v</mi><mo>∈</mo><mi>S</mi></mrow></math></span>, the majority of vertices in its closed neighbourhood belong to <span><math><mi>S</mi></math></span>; that is, <span><math><mrow><mrow><mo>|</mo><msub><mrow><mi>N</mi></mrow><mrow><mi>G</mi></mrow></msub><mrow><mo>[</mo><mi>v</mi><mo>]</mo></mrow><mo>∩</mo><mi>S</mi><mo>|</mo></mrow><mo>≥</mo><mrow><mo>|</mo><msub><mrow><mi>N</mi></mrow><mrow><mi>G</mi></mrow></msub><mrow><mo>[</mo><mi>v</mi><mo>]</mo></mrow><mo>∖</mo><mi>S</mi><mo>|</mo></mrow></mrow></math></span>. The Defensive Alliance problem (<span>Defensive Alliance</span>) asks for a defensive alliance of minimum cardinality. The decision version of the problem is known to be NP-complete even when restricted to split graphs and bipartite graphs. From a parameterized complexity perspective, the <span>Defensive Alliance</span> is known to be fixed-parameter tractable (FPT) when parameterized by the solution size, the vertex cover number, or the neighbourhood diversity of the input graph. In contrast, the problem is W[1]-hard when parameterized by the treewidth or the feedback vertex set number.</div><div>In this paper, we investigate the complexity of the <span>Defensive Alliance</span> on bounded degree graphs. We prove that the problem is <em>polynomial-time solvable</em> on graphs with maximum degree at most 5 but becomes NP-complete when the maximum degree is 6. This result rules out fixed-parameter tractability with respect to the maximum degree. Additionally, we analyse the problem from the perspective of parameterized complexity and present an FPT algorithm parameterized by twin cover number, thereby resolving an open question posed in Gaikwad and Maity (2022).</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"380 ","pages":"Pages 116-127"},"PeriodicalIF":1.0,"publicationDate":"2025-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145097619","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The toll walk transit function of a graph: Axiomatic characterizations and first-order non-definability 图的收费步行运输函数:公理化表征和一阶不可定义性
IF 1 3区 数学
Discrete Applied Mathematics Pub Date : 2025-09-17 DOI: 10.1016/j.dam.2025.09.006
Manoj Changat , Jeny Jacob , Lekshmi Kamal K. Sheela , Iztok Peterin
{"title":"The toll walk transit function of a graph: Axiomatic characterizations and first-order non-definability","authors":"Manoj Changat ,&nbsp;Jeny Jacob ,&nbsp;Lekshmi Kamal K. Sheela ,&nbsp;Iztok Peterin","doi":"10.1016/j.dam.2025.09.006","DOIUrl":"10.1016/j.dam.2025.09.006","url":null,"abstract":"<div><div>A walk <span><math><mrow><mi>W</mi><mo>=</mo><msub><mrow><mi>w</mi></mrow><mrow><mn>1</mn></mrow></msub><msub><mrow><mi>w</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>…</mo><msub><mrow><mi>w</mi></mrow><mrow><mi>k</mi></mrow></msub></mrow></math></span>, <span><math><mrow><mi>k</mi><mo>≥</mo><mn>2</mn></mrow></math></span>, is called a toll walk if <span><math><mrow><msub><mrow><mi>w</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>≠</mo><msub><mrow><mi>w</mi></mrow><mrow><mi>k</mi></mrow></msub></mrow></math></span> and <span><math><mrow><msub><mrow><mi>w</mi></mrow><mrow><mn>2</mn></mrow></msub><mrow><mo>(</mo><msub><mrow><mi>w</mi></mrow><mrow><mi>k</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>)</mo></mrow></mrow></math></span> are the only neighbors of <span><math><mrow><msub><mrow><mi>w</mi></mrow><mrow><mn>1</mn></mrow></msub><mrow><mo>(</mo><msub><mrow><mi>w</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>)</mo></mrow></mrow></math></span> on <span><math><mi>W</mi></math></span> in a graph <span><math><mi>G</mi></math></span>. A toll walk interval <span><math><mrow><mi>T</mi><mrow><mo>(</mo><mi>u</mi><mo>,</mo><mi>v</mi><mo>)</mo></mrow></mrow></math></span>, <span><math><mrow><mi>u</mi><mo>,</mo><mi>v</mi><mo>∈</mo><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>, contains all the vertices that belong to a toll walk between <span><math><mi>u</mi></math></span> and <span><math><mi>v</mi></math></span>. The toll walk intervals yield a toll walk transit function <span><math><mrow><mi>T</mi><mo>:</mo><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>×</mo><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>→</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></msup></mrow></math></span>. We represent several axioms that characterize the toll walk transit function among chordal graphs, trees, asteroidal triple-free graphs, Ptolemaic graphs, and distance-hereditary graphs. We also show that the toll walk transit function cannot be described in the language of first-order logic for an arbitrary graph.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"380 ","pages":"Pages 128-145"},"PeriodicalIF":1.0,"publicationDate":"2025-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145097642","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Berge coalitional stabilities in the graph model for conflict resolution 冲突解决图模型中的Berge联盟稳定性
IF 1 3区 数学
Discrete Applied Mathematics Pub Date : 2025-09-17 DOI: 10.1016/j.dam.2025.09.012
Giannini Italino Alves Vieira , Leandro Chaves Rêgo
{"title":"Berge coalitional stabilities in the graph model for conflict resolution","authors":"Giannini Italino Alves Vieira ,&nbsp;Leandro Chaves Rêgo","doi":"10.1016/j.dam.2025.09.012","DOIUrl":"10.1016/j.dam.2025.09.012","url":null,"abstract":"<div><div>Altruism is a behavior that is commonly observed in human interactions. The concept of Berge stability has been introduced in game theory and, more recently, in the graph model for conflict resolution, to represent decision makers (DMs) that act altruistically expecting others to reciprocate. However, this stability concept has only been introduced from the point of view of individual DMs. This paper incorporates the concept of Berge stability into the framework of coalition analysis within the graph model for conflict resolution. In particular, it introduces nine novel concepts for coalition analysis and thoroughly examines the relationships among these new concepts, as well as their connections to other coalition concepts found in the existing literature on this model. To illustrate the use in practice of the proposed stability concepts, a coalitional Berge stability analysis is conducted in the Elmira groundwater contamination conflict.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"379 ","pages":"Pages 405-418"},"PeriodicalIF":1.0,"publicationDate":"2025-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145105087","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Odd coloring of 2-boundary planar graphs and beyond 二界平面图及其以外的奇着色
IF 1 3区 数学
Discrete Applied Mathematics Pub Date : 2025-09-16 DOI: 10.1016/j.dam.2025.08.064
Weichan Liu , Mengke Qi , Xin Zhang
{"title":"Odd coloring of 2-boundary planar graphs and beyond","authors":"Weichan Liu ,&nbsp;Mengke Qi ,&nbsp;Xin Zhang","doi":"10.1016/j.dam.2025.08.064","DOIUrl":"10.1016/j.dam.2025.08.064","url":null,"abstract":"<div><div>In this paper, we introduce the notion of 2-boundary planar graphs. A graph is 2-boundary planar if it has an embedding in the plane so that all vertices lie on the boundary of at most two faces and no edges are crossed. A proper coloring of a graph is odd if every non-isolated vertex has some color that appears an odd number of times on its neighborhood. Petruševski and Škrekovski conjectured in 2022 that every planar graph admits an odd 5-coloring. We confirm this conjecture for 2-boundary planar graphs. Moreover, we present several questions regarding 2-boundary planar graphs that are of independent interest.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"380 ","pages":"Pages 68-79"},"PeriodicalIF":1.0,"publicationDate":"2025-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145097643","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The maximum number of cliques in graphs with given fractional matching number and minimum degree 给定分数匹配数和最小度的图中团的最大数目
IF 1 3区 数学
Discrete Applied Mathematics Pub Date : 2025-09-16 DOI: 10.1016/j.dam.2025.09.010
Chengli Li, Yurui Tang
{"title":"The maximum number of cliques in graphs with given fractional matching number and minimum degree","authors":"Chengli Li,&nbsp;Yurui Tang","doi":"10.1016/j.dam.2025.09.010","DOIUrl":"10.1016/j.dam.2025.09.010","url":null,"abstract":"<div><div>Recently, Ma, Qian and Shi determined the maximum size of an <span><math><mi>n</mi></math></span>-vertex graph with given fractional matching number <span><math><mi>s</mi></math></span> and maximum degree at most <span><math><mi>d</mi></math></span>. Motivated by this result, we determine the maximum number of <span><math><mi>ℓ</mi></math></span>-cliques in a graph with given fractional matching number and minimum degree, which generalizes Shi and Ma’s result about the maximum size of a graph with given fractional matching number and minimum degree at least one. We also determine the maximum number of complete bipartite graphs in a graph with prescribed fractional matching number and minimum degree.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"379 ","pages":"Pages 390-399"},"PeriodicalIF":1.0,"publicationDate":"2025-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145105088","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Single machine scheduling with a restricted rate-modifying activity to minimize the weighted makespan 单台机器调度,限制速率修改活动,以最小化加权完工时间
IF 1 3区 数学
Discrete Applied Mathematics Pub Date : 2025-09-16 DOI: 10.1016/j.dam.2025.09.013
Lili Zuo, Jing Zhang, Zhan Shi, Bingbing Fan
{"title":"Single machine scheduling with a restricted rate-modifying activity to minimize the weighted makespan","authors":"Lili Zuo,&nbsp;Jing Zhang,&nbsp;Zhan Shi,&nbsp;Bingbing Fan","doi":"10.1016/j.dam.2025.09.013","DOIUrl":"10.1016/j.dam.2025.09.013","url":null,"abstract":"<div><div>We investigate the single machine scheduling problem with a restricted rate-modifying activity (RMA) aimed at minimizing the weighted makespan. The RMA is an activity that modifies the machine’s production rate while occupying it for a specified duration. Importantly, its starting time is constrained to fall within a predetermined interval <span><math><mrow><mo>[</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo>]</mo></mrow></math></span>. Our results demonstrate that the special case where parameter <span><math><mrow><mi>a</mi><mo>=</mo><mn>0</mn></mrow></math></span> admits a polynomial-time solution, while the cases with <span><math><mrow><mi>b</mi><mo>=</mo><mi>∞</mi></mrow></math></span> or <span><math><mrow><mi>b</mi><mo>=</mo><mi>a</mi></mrow></math></span> are proven to be binary NP-hard. For these NP-hard problems, we develop pseudo-polynomial time dynamic programming solutions. Notably, in the scenario where splitting is permitted, we establish a polynomial-time algorithm for the <span><math><mrow><mi>b</mi><mo>=</mo><mi>a</mi></mrow></math></span> case, which in turn enables the derivation of a 2-approximation algorithm for the non-split version. Additionally, by combining our dynamic programming approach with the vector trimming technique, we achieve fully polynomial-time approximation schemes (FPTAS) for all NP-hard variants under consideration.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"380 ","pages":"Pages 89-100"},"PeriodicalIF":1.0,"publicationDate":"2025-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145097617","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On sign-invertible graphs 在符号可逆图上
IF 1 3区 数学
Discrete Applied Mathematics Pub Date : 2025-09-16 DOI: 10.1016/j.dam.2025.09.005
Isaiah Osborne , Dong Ye
{"title":"On sign-invertible graphs","authors":"Isaiah Osborne ,&nbsp;Dong Ye","doi":"10.1016/j.dam.2025.09.005","DOIUrl":"10.1016/j.dam.2025.09.005","url":null,"abstract":"<div><div>Let <span><math><mi>G</mi></math></span> be a graph and <span><math><mi>A</mi></math></span> be its adjacency matrix. A graph <span><math><mi>G</mi></math></span> is invertible if its adjacency matrix <span><math><mi>A</mi></math></span> is invertible and the inverse of <span><math><mi>G</mi></math></span> is a weighted graph with adjacency matrix <span><math><msup><mrow><mi>A</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></math></span>. A signed graph <span><math><mrow><mo>(</mo><mi>G</mi><mo>,</mo><mi>σ</mi><mo>)</mo></mrow></math></span> is a weighted graph with a special weight function <span><math><mrow><mi>σ</mi><mo>:</mo><mi>E</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>→</mo><mrow><mo>{</mo><mo>−</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo>}</mo></mrow></mrow></math></span>. A graph is sign-invertible if its inverse is a signed graph. A sign-invertible graph is always unimodular. The inverses of graphs have interesting combinatorial interests. In this paper, we study inverses of graphs and provide a combinatorial description for sign-invertible graphs, which provides a tool to characterize sign-invertible graphs. As applications, we completely characterize sign-invertible bipartite graphs with a unique perfect matching, and sign-invertible graphs with cycle rank at most two. As corollaries of these characterizations, some early results on trees (Buckley, Doty and Harary in 1982) and unicyclic graphs with a unique perfect matching (Kalita and Sarma in 2022) follow directly.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"380 ","pages":"Pages 101-115"},"PeriodicalIF":1.0,"publicationDate":"2025-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145097644","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Interlacing properties of Laplacian eigenvalues of chain graphs 链图拉普拉斯特征值的交错性质
IF 1 3区 数学
Discrete Applied Mathematics Pub Date : 2025-09-15 DOI: 10.1016/j.dam.2025.09.007
Milica Anđelić , Zoran Stanić , Fernando C. Tura
{"title":"Interlacing properties of Laplacian eigenvalues of chain graphs","authors":"Milica Anđelić ,&nbsp;Zoran Stanić ,&nbsp;Fernando C. Tura","doi":"10.1016/j.dam.2025.09.007","DOIUrl":"10.1016/j.dam.2025.09.007","url":null,"abstract":"<div><div>Chain graphs are <span><math><mrow><mo>{</mo><mn>2</mn><msub><mrow><mi>K</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><msub><mrow><mi>C</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>,</mo><msub><mrow><mi>C</mi></mrow><mrow><mn>5</mn></mrow></msub><mo>}</mo></mrow></math></span>-free graphs. The Laplacian spectrum of a chain graph of order <span><math><mi>n</mi></math></span> consists of <span><math><mrow><mi>n</mi><mo>−</mo><mn>2</mn><mi>h</mi></mrow></math></span> integer eigenvalues and <span><math><mrow><mn>2</mn><mi>h</mi></mrow></math></span> possibly non-integer eigenvalues that correspond to the associated quotient matrix of order <span><math><mrow><mn>2</mn><mi>h</mi></mrow></math></span>. We show that <span><math><mrow><mn>2</mn><mi>h</mi></mrow></math></span> complementary eigenvalues interlace vertex degrees. As an application, we confirm that the Brouwer’s conjecture holds for chain graphs.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"380 ","pages":"Pages 80-88"},"PeriodicalIF":1.0,"publicationDate":"2025-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145061296","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信