{"title":"Approximation algorithm for prize-collecting weighted set cover with fairness constraints","authors":"Mingchao Zhou, Zhao Zhang","doi":"10.1016/j.dam.2025.05.010","DOIUrl":null,"url":null,"abstract":"<div><div>Fairness has become one of the hottest concerns in recent research. This paper introduces the prize-collecting weighted set cover problem with fairness constraint (FPCWSC). It is a variant of the minimum weight set cover problem, in which every uncovered element incurs a penalty and the elements are divided into several groups, each group having a minimum number of elements required to be covered. The goal is to minimize the cost of selected sets plus the penalties on those uncovered elements, subject to the constraint that every group has its coverage requirement satisfied. We propose a four-phase algorithm using deterministic rounding twice, followed by a randomized rounding method and a greedy method. In polynomial time, the algorithm computes a feasible solution with an expected approximation ratio <span><math><mrow><mi>O</mi><mrow><mo>(</mo><mi>f</mi><mo>+</mo><mo>ln</mo><mi>Δ</mi><mo>)</mo></mrow></mrow></math></span>, where <span><math><mi>f</mi></math></span> is the maximum number of sets containing a common element and <span><math><mi>Δ</mi></math></span> is the maximum number of groups having nonempty intersection with a set.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"373 ","pages":"Pages 301-315"},"PeriodicalIF":1.0000,"publicationDate":"2025-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166218X25002537","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Fairness has become one of the hottest concerns in recent research. This paper introduces the prize-collecting weighted set cover problem with fairness constraint (FPCWSC). It is a variant of the minimum weight set cover problem, in which every uncovered element incurs a penalty and the elements are divided into several groups, each group having a minimum number of elements required to be covered. The goal is to minimize the cost of selected sets plus the penalties on those uncovered elements, subject to the constraint that every group has its coverage requirement satisfied. We propose a four-phase algorithm using deterministic rounding twice, followed by a randomized rounding method and a greedy method. In polynomial time, the algorithm computes a feasible solution with an expected approximation ratio , where is the maximum number of sets containing a common element and is the maximum number of groups having nonempty intersection with a set.
期刊介绍:
The aim of Discrete Applied Mathematics is to bring together research papers in different areas of algorithmic and applicable discrete mathematics as well as applications of combinatorial mathematics to informatics and various areas of science and technology. Contributions presented to the journal can be research papers, short notes, surveys, and possibly research problems. The "Communications" section will be devoted to the fastest possible publication of recent research results that are checked and recommended for publication by a member of the Editorial Board. The journal will also publish a limited number of book announcements as well as proceedings of conferences. These proceedings will be fully refereed and adhere to the normal standards of the journal.
Potential authors are advised to view the journal and the open calls-for-papers of special issues before submitting their manuscripts. Only high-quality, original work that is within the scope of the journal or the targeted special issue will be considered.