Dániel Gerbner , András Imolay , Gyula O.H. Katona , Dániel T. Nagy , Kartal Nagy , Balázs Patkós , Domonkos Stadler , Kristóf Zólomy
{"title":"Identification of a monotone Boolean function with k “reasons” as a combinatorial search problem","authors":"Dániel Gerbner , András Imolay , Gyula O.H. Katona , Dániel T. Nagy , Kartal Nagy , Balázs Patkós , Domonkos Stadler , Kristóf Zólomy","doi":"10.1016/j.dam.2025.09.028","DOIUrl":"10.1016/j.dam.2025.09.028","url":null,"abstract":"<div><div>We study the number of queries needed to identify a monotone Boolean function <span><math><mrow><mi>f</mi><mo>:</mo><msup><mrow><mrow><mo>{</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>}</mo></mrow></mrow><mrow><mi>n</mi></mrow></msup><mo>→</mo><mrow><mo>{</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>}</mo></mrow></mrow></math></span>. A query consists of a 0-1-sequence, and the answer is the value of <span><math><mi>f</mi></math></span> on that sequence. It is well-known that the number of queries needed is <span><math><mrow><mfenced><mrow><mfrac><mrow><mi>n</mi></mrow><mrow><mrow><mo>⌊</mo><mi>n</mi><mo>/</mo><mn>2</mn><mo>⌋</mo></mrow></mrow></mfrac></mrow></mfenced><mo>+</mo><mfenced><mrow><mfrac><mrow><mi>n</mi></mrow><mrow><mrow><mo>⌊</mo><mi>n</mi><mo>/</mo><mn>2</mn><mo>⌋</mo></mrow><mo>+</mo><mn>1</mn></mrow></mfrac></mrow></mfenced></mrow></math></span> in general. Here we study a variant where <span><math><mi>f</mi></math></span> has <span><math><mi>k</mi></math></span> “reasons” to be 1, i.e., its disjunctive normal form has <span><math><mi>k</mi></math></span> conjunctions if the redundant conjunctions are deleted. This problem is equivalent to identifying an upfamily in <span><math><msup><mrow><mn>2</mn></mrow><mrow><mrow><mo>[</mo><mi>n</mi><mo>]</mo></mrow></mrow></msup></math></span> that has exactly <span><math><mi>k</mi></math></span> minimal members. We find the asymptotics on the number of queries needed for fixed <span><math><mi>k</mi></math></span>. We also study the non-adaptive version of the problem, where the queries are asked at the same time, and determine the exact number of queries for most values of <span><math><mi>k</mi></math></span> and <span><math><mi>n</mi></math></span>.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"378 ","pages":"Pages 703-709"},"PeriodicalIF":1.0,"publicationDate":"2025-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145218960","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A Poisson limit for the number of sub-matrices of random binary matrices satisfying the majority rule","authors":"Italo Simonelli , Andreas Wendemuth","doi":"10.1016/j.dam.2025.09.004","DOIUrl":"10.1016/j.dam.2025.09.004","url":null,"abstract":"<div><div>We consider <span><math><mrow><mi>m</mi><mo>×</mo><mi>n</mi></mrow></math></span> random binary matrices, <span><math><mrow><mi>m</mi><mo>=</mo><mi>m</mi><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></mrow></math></span>. For arbitrary odd integer <span><math><mi>k</mi></math></span> we investigate the asymptotic distribution of the random number of sub-matrices of size <span><math><mrow><mi>k</mi><mo>×</mo><mi>n</mi></mrow></math></span> for which the number of ones in every column satisfies the majority rule. We discuss possible impacts of our result and give examples of applications.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"380 ","pages":"Pages 198-204"},"PeriodicalIF":1.0,"publicationDate":"2025-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145221598","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Construction of regular homogeneously traceable nonhamiltonian graphs","authors":"Xining Liu, Pu Qiao","doi":"10.1016/j.dam.2025.08.052","DOIUrl":"10.1016/j.dam.2025.08.052","url":null,"abstract":"<div><div>A graph is called homogeneously traceable if every vertex is an endpoint of a Hamilton path. In 1979 Chartrand, Gould and Kapoor proved that for every integer <span><math><mrow><mi>n</mi><mo>≥</mo><mn>9</mn><mo>,</mo></mrow></math></span> there exists a homogeneously traceable nonhamiltonian graph of order <span><math><mi>n</mi></math></span>. The graphs they constructed are irregular. Thus it is natural to consider the existence problem of regular homogeneously traceable nonhamiltonian graphs. In 2022 Hu and Zhan proved that for every even integer <span><math><mrow><mi>n</mi><mo>≥</mo><mn>10</mn></mrow></math></span>, there exists a cubic homogeneously traceable nonhamiltonian graph of order <span><math><mi>n</mi></math></span>, and for every integer <span><math><mrow><mi>n</mi><mo>≥</mo><mn>18</mn></mrow></math></span>, there exists a 4-regular homogeneously traceable nonhamiltonian graph of order <span><math><mi>n</mi></math></span>. They also posed the problem: Given an integer <span><math><mrow><mi>k</mi><mo>≥</mo><mn>4</mn></mrow></math></span>, determine the integers <span><math><mi>n</mi></math></span> such that there exists a <span><math><mi>k</mi></math></span>-regular homogeneously traceable nonhamiltonian graph of order <span><math><mi>n</mi></math></span>. We prove two results: (1) For every odd integer <span><math><mrow><mi>k</mi><mo>≥</mo><mn>5</mn></mrow></math></span>, integer <span><math><mrow><mi>p</mi><mo>≥</mo><mn>6</mn></mrow></math></span> and integer <span><math><mrow><mi>q</mi><mo>∈</mo><mrow><mo>{</mo><mn>0</mn><mo>,</mo><mn>2</mn><mo>,</mo><mn>4</mn><mo>,</mo><mn>6</mn><mo>}</mo></mrow></mrow></math></span>, there exists a <span><math><mi>k</mi></math></span>-regular homogeneously traceable nonhamiltonian graph of order <span><math><mrow><mi>p</mi><mrow><mo>(</mo><mi>k</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow><mo>+</mo><mi>q</mi></mrow></math></span>; (2) for every even integer <span><math><mrow><mi>k</mi><mo>≥</mo><mn>6</mn></mrow></math></span>, integer <span><math><mrow><mi>p</mi><mo>≥</mo><mn>6</mn></mrow></math></span> and integer <span><math><mrow><mi>q</mi><mo>∈</mo><mrow><mo>{</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mn>3</mn><mo>,</mo><mn>4</mn><mo>,</mo><mn>5</mn><mo>,</mo><mn>6</mn><mo>}</mo></mrow></mrow></math></span>, there exists a <span><math><mi>k</mi></math></span>-regular homogeneously traceable nonhamiltonian graph of order <span><math><mrow><mi>p</mi><mrow><mo>(</mo><mi>k</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow><mo>+</mo><mi>q</mi></mrow></math></span>.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"379 ","pages":"Pages 500-508"},"PeriodicalIF":1.0,"publicationDate":"2025-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145219508","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shi-Mei Ma , Hong Bian , Jun-Ying Liu , Jean Yeh , Yeong-Nan Yeh
{"title":"Determinantal representations of enumerative polynomials","authors":"Shi-Mei Ma , Hong Bian , Jun-Ying Liu , Jean Yeh , Yeong-Nan Yeh","doi":"10.1016/j.dam.2025.09.025","DOIUrl":"10.1016/j.dam.2025.09.025","url":null,"abstract":"<div><div>Based on a determinantal formula for the higher derivative of a quotient of two functions, we first present the determinantal expressions of Eulerian polynomials and André polynomials. In particular, we discover that the Euler number (number of alternating permutations) can be expressed as a lower Hessenberg determinant. We then investigate the determinantal representations of the up-down run polynomials and the types <span><math><mi>A</mi></math></span> and <span><math><mi>B</mi></math></span> alternating run polynomials. As applications, we deduce several new recurrence relations. And then, we provide two determinantal representations for the alternating run polynomials of dual Stirling permutations. In particular, we discover a close connection between the alternating run polynomials of dual Stirling permutations and the type <span><math><mi>B</mi></math></span> Eulerian polynomials.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"378 ","pages":"Pages 682-702"},"PeriodicalIF":1.0,"publicationDate":"2025-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145218961","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On graphs with third largest eccentricity eigenvalue in the interval [−2,−1]","authors":"Yuanfen Song , Maurizio Brunetti , Jianfeng Wang","doi":"10.1016/j.dam.2025.09.027","DOIUrl":"10.1016/j.dam.2025.09.027","url":null,"abstract":"<div><div>The eccentricity matrix (or anti-adjacency matrix) of a graph is constructed from its distance matrix by keeping in each row and each column only the largest distances. In this paper all connected graphs whose third largest anti-adjacency eigenvalue belongs to the interval <span><math><mrow><mo>[</mo><mo>−</mo><mn>2</mn><mo>,</mo><mo>−</mo><mn>1</mn><mo>]</mo></mrow></math></span> are structurally characterized.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"378 ","pages":"Pages 671-681"},"PeriodicalIF":1.0,"publicationDate":"2025-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145157548","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Near automorphisms of powers of a path","authors":"Shoushuang Chen, Shikun Ou","doi":"10.1016/j.dam.2025.09.015","DOIUrl":"10.1016/j.dam.2025.09.015","url":null,"abstract":"<div><div>Let <span><math><mi>G</mi></math></span> be a connected graph with vertex set <span><math><mrow><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>, and <span><math><mi>f</mi></math></span> a permutation on <span><math><mrow><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>. Define <span><math><mrow><msub><mrow><mi>δ</mi></mrow><mrow><mi>f</mi></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></mrow><mo>=</mo><mrow><mo>|</mo><mi>d</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></mrow><mo>−</mo><mi>d</mi><mrow><mo>(</mo><mi>f</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>,</mo><mi>f</mi><mrow><mo>(</mo><mi>y</mi><mo>)</mo></mrow><mo>)</mo></mrow><mo>|</mo></mrow></mrow></math></span> and <span><math><mrow><msub><mrow><mi>δ</mi></mrow><mrow><mi>f</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>=</mo><mo>∑</mo><msub><mrow><mi>δ</mi></mrow><mrow><mi>f</mi></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></mrow></mrow></math></span>, where the sum is taken over all unordered pairs <span><math><mrow><mi>x</mi><mo>,</mo><mi>y</mi></mrow></math></span> of distinct vertices of <span><math><mi>G</mi></math></span>. Denote by <span><math><mrow><mi>π</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> the smallest positive value of <span><math><mrow><msub><mrow><mi>δ</mi></mrow><mrow><mi>f</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> among all permutations on <span><math><mrow><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>. A permutation <span><math><mi>f</mi></math></span> on <span><math><mrow><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> is called a <em>near automorphism</em> of <span><math><mi>G</mi></math></span> if <span><math><mrow><msub><mrow><mi>δ</mi></mrow><mrow><mi>f</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>=</mo><mi>π</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>. The <span><math><mi>k</mi></math></span>th power of <span><math><mi>G</mi></math></span>, written as <span><math><msup><mrow><mi>G</mi></mrow><mrow><mi>k</mi></mrow></msup></math></span>, also has <span><math><mrow><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> as vertex set, but <span><math><mi>x</mi></math></span> and <span><math><mi>y</mi></math></span> are adjacent in <span><math><msup><mrow><mi>G</mi></mrow><mrow><mi>k</mi></mrow></msup></math></span> whenever <span><math><mrow><mi>d</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></mrow><mo>≤</mo><mi>k</mi></mrow></math></span> in <span><math><mi>G</mi></math></span>. The near automorphisms of the path <span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> and its square <span><math><msubsup><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msubsup></ma","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"379 ","pages":"Pages 482-499"},"PeriodicalIF":1.0,"publicationDate":"2025-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145157970","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Augmenting a hypergraph to have a matroid-based (f,g)-bounded (α,β)-limited packing of rooted hypertrees","authors":"Pierre Hoppenot, Zoltán Szigeti","doi":"10.1016/j.dam.2025.09.023","DOIUrl":"10.1016/j.dam.2025.09.023","url":null,"abstract":"<div><div>The aim of this paper is to further develop the theory of packing trees in a graph. We first prove the classic result of Nash-Williams (Nash-Williams, 1961) and Tutte (Tutte, 1961) on packing spanning trees by adapting Lovász’ proof (Lovász, 1976) of the seminal result of Edmonds (Edmonds, 1973) on packing spanning arborescences in a digraph. Our main result on graphs extends the theorem of Katoh and Tanigawa (Katoh and Tanigawa, 2013) on matroid-based packing of rooted trees by characterizing the existence of such a packing satisfying the following further conditions: for every vertex <span><math><mi>v</mi></math></span>, there are given a lower bound <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>v</mi><mo>)</mo></mrow></mrow></math></span> and an upper bound <span><math><mrow><mi>g</mi><mrow><mo>(</mo><mi>v</mi><mo>)</mo></mrow></mrow></math></span> on the number of trees rooted at <span><math><mi>v</mi></math></span> and there are given a lower bound <span><math><mi>α</mi></math></span> and an upper bound <span><math><mi>β</mi></math></span> on the total number of roots. We also answer the hypergraphic version of the problem. Furthermore, we are able to solve the augmentation version of the latter problem, where the goal is to add a minimum number of edges to have such a packing. The methods developed in this paper to solve these problems may have other applications in the future.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"379 ","pages":"Pages 469-481"},"PeriodicalIF":1.0,"publicationDate":"2025-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145157969","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Bjoern Andres , Jannik Irmai , Lucas Fabian Naumann
{"title":"Chorded cycle facets of the clique partitioning polytope","authors":"Bjoern Andres , Jannik Irmai , Lucas Fabian Naumann","doi":"10.1016/j.dam.2025.09.020","DOIUrl":"10.1016/j.dam.2025.09.020","url":null,"abstract":"<div><div>The <span><math><mi>q</mi></math></span>-chorded <span><math><mi>k</mi></math></span>-cycle inequalities are a class of valid inequalities for the clique partitioning polytope. It is known that for <span><math><mrow><mi>q</mi><mo>∈</mo><mrow><mo>{</mo><mn>2</mn><mo>,</mo><mfrac><mrow><mi>k</mi><mo>−</mo><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>}</mo></mrow></mrow></math></span>, these inequalities induce facets of the clique partitioning polytope if and only if <span><math><mi>k</mi></math></span> is odd. Here, we characterize such facets for arbitrary <span><math><mi>k</mi></math></span> and <span><math><mi>q</mi></math></span>. More specifically, we prove that the <span><math><mi>q</mi></math></span>-chorded <span><math><mi>k</mi></math></span>-cycle inequalities induce facets of the clique partitioning polytope if and only if two conditions are satisfied: <span><math><mrow><mi>k</mi><mo>=</mo><mn>1</mn></mrow></math></span> mod <span><math><mi>q</mi></math></span>, and if <span><math><mrow><mi>k</mi><mo>=</mo><mn>3</mn><mi>q</mi><mo>+</mo><mn>1</mn></mrow></math></span> then <span><math><mrow><mi>q</mi><mo>=</mo><mn>3</mn></mrow></math></span> or <span><math><mi>q</mi></math></span> is even. This establishes the existence of many facets induced by <span><math><mi>q</mi></math></span>-chorded <span><math><mi>k</mi></math></span>-cycle inequalities beyond those previously known.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"378 ","pages":"Pages 662-670"},"PeriodicalIF":1.0,"publicationDate":"2025-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145158057","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Li Liu , Fengxia Liu , Yun Li , Hong-Jian Lai , Hua Cai
{"title":"Upper bound of the list r-hued chromatic number","authors":"Li Liu , Fengxia Liu , Yun Li , Hong-Jian Lai , Hua Cai","doi":"10.1016/j.dam.2025.09.021","DOIUrl":"10.1016/j.dam.2025.09.021","url":null,"abstract":"<div><div>Let <span><math><mi>k</mi></math></span>, <span><math><mi>r</mi></math></span> be positive integers. For a color list <span><math><mi>L</mi></math></span> on <span><math><mrow><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>, if <span><math><mrow><mrow><mo>|</mo><mi>L</mi><mrow><mo>(</mo><mi>v</mi><mo>)</mo></mrow><mo>|</mo></mrow><mo>=</mo><mi>k</mi></mrow></math></span> for any <span><math><mrow><mi>v</mi><mo>∈</mo><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>, then <span><math><mi>L</mi></math></span> is a <span><math><mi>k</mi></math></span>-list of <span><math><mi>G</mi></math></span>. Given a list <span><math><mi>L</mi></math></span> of <span><math><mi>G</mi></math></span>, an <span><math><mrow><mo>(</mo><mi>L</mi><mo>,</mo><mi>r</mi><mo>)</mo></mrow></math></span>-coloring of <span><math><mi>G</mi></math></span> is a proper vertex coloring <span><math><mi>c</mi></math></span> such that <span><math><mrow><mi>c</mi><mrow><mo>(</mo><mi>v</mi><mo>)</mo></mrow><mo>∈</mo><mi>L</mi><mrow><mo>(</mo><mi>v</mi><mo>)</mo></mrow></mrow></math></span> and any vertex is adjacent to vertices with at least min<span><math><mrow><mo>{</mo><mi>r</mi><mo>,</mo><msub><mrow><mi>d</mi></mrow><mrow><mi>G</mi></mrow></msub><mrow><mo>(</mo><mi>v</mi><mo>)</mo></mrow><mo>}</mo></mrow></math></span> different colors. The list <span><math><mi>r</mi></math></span>-hued chromatic number of <span><math><mi>G</mi></math></span>, denoted by <span><math><mrow><msub><mrow><mi>χ</mi></mrow><mrow><mi>L</mi><mo>,</mo><mi>r</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>, is the smallest integer <span><math><mi>k</mi></math></span> such that for any <span><math><mi>k</mi></math></span>-list <span><math><mi>L</mi></math></span> of <span><math><mi>G</mi></math></span>, <span><math><mi>G</mi></math></span> has an <span><math><mrow><mo>(</mo><mi>L</mi><mo>,</mo><mi>r</mi><mo>)</mo></mrow></math></span>-coloring. In this paper, we prove that if <span><math><mi>G</mi></math></span> is a connected graph, then <span><math><mrow><msub><mrow><mi>χ</mi></mrow><mrow><mi>L</mi><mo>,</mo><mi>r</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≤</mo><mo>min</mo><mrow><mo>{</mo><mi>r</mi><mi>Δ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>,</mo><msup><mrow><mi>Δ</mi></mrow><mrow><mn>2</mn></mrow></msup><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>}</mo></mrow><mo>+</mo><mn>1</mn></mrow></math></span>, where the equality holds if and only if <span><math><mrow><mi>r</mi><mo>≥</mo><mi>Δ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mi>G</mi></math></span> is a Moore graph with diameter 2.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"380 ","pages":"Pages 187-197"},"PeriodicalIF":1.0,"publicationDate":"2025-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145159808","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The d-blocker number and d-transversal number of hexagonal systems","authors":"Hailun Wu","doi":"10.1016/j.dam.2025.09.018","DOIUrl":"10.1016/j.dam.2025.09.018","url":null,"abstract":"<div><div>The carbon skeleton of a benzenoid hydrocarbon is often represented by a hexagonal system <span><math><mi>H</mi></math></span> with a perfect matching (or Kekulé structure). Vukičević and Trinajstić defined the anti-Kekulé number <span><math><mrow><mi>a</mi><mi>k</mi><mrow><mo>(</mo><mi>H</mi><mo>)</mo></mrow></mrow></math></span> as the smallest number of edges of <span><math><mi>H</mi></math></span> whose removal results in a connected graph without Kekulé structures. In general, this article investigates related parameters, the <span><math><mi>d</mi></math></span>-blocker number <span><math><mrow><msub><mrow><mi>β</mi></mrow><mrow><mi>d</mi></mrow></msub><mrow><mo>(</mo><mi>H</mi><mo>)</mo></mrow></mrow></math></span> and the <span><math><mi>d</mi></math></span>-transversal number <span><math><mrow><msub><mrow><mi>τ</mi></mrow><mrow><mi>d</mi></mrow></msub><mrow><mo>(</mo><mi>H</mi><mo>)</mo></mrow></mrow></math></span>, introduced by Zenklusen et al. These quantify the minimum sizes of an edge subset whose removal reduces the matching number by <span><math><mi>d</mi></math></span>, and an edge subset that contains at least <span><math><mi>d</mi></math></span> edges of every maximum matching, respectively. For parallelogram, regular hexagon-shaped, and cata-condensed hexagonal systems <span><math><mi>H</mi></math></span>, we derive explicit formulas for the <span><math><mi>d</mi></math></span>-blocker number <span><math><mrow><msub><mrow><mi>β</mi></mrow><mrow><mi>d</mi></mrow></msub><mrow><mo>(</mo><mi>H</mi><mo>)</mo></mrow></mrow></math></span> for all <span><math><mrow><mn>1</mn><mo>≤</mo><mi>d</mi><mo>≤</mo><mrow><mo>|</mo><mi>V</mi><mrow><mo>(</mo><mi>H</mi><mo>)</mo></mrow><mo>|</mo></mrow><mo>/</mo><mn>2</mn></mrow></math></span>, and explicit expressions or bounds for the <span><math><mi>d</mi></math></span>-transversal number <span><math><mrow><msub><mrow><mi>τ</mi></mrow><mrow><mi>d</mi></mrow></msub><mrow><mo>(</mo><mi>H</mi><mo>)</mo></mrow></mrow></math></span>. These results extend the robustness analysis of Kekulé structures and generalize the matching preclusion number (corresponding to <span><math><mrow><mi>d</mi><mo>=</mo><mn>1</mn></mrow></math></span>) in benzenoid systems.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"380 ","pages":"Pages 175-186"},"PeriodicalIF":1.0,"publicationDate":"2025-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145159809","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}