Discrete Applied Mathematics最新文献

筛选
英文 中文
Research problems from the 1st Chinese–Southeasteuropean conference on discrete mathematics and applications
IF 1 3区 数学
Discrete Applied Mathematics Pub Date : 2025-04-01 DOI: 10.1016/j.dam.2025.02.037
Vedran Krčadinac , Shenggui Zhang , Liming Xiong , Dragan Stevanović
{"title":"Research problems from the 1st Chinese–Southeasteuropean conference on discrete mathematics and applications","authors":"Vedran Krčadinac ,&nbsp;Shenggui Zhang ,&nbsp;Liming Xiong ,&nbsp;Dragan Stevanović","doi":"10.1016/j.dam.2025.02.037","DOIUrl":"10.1016/j.dam.2025.02.037","url":null,"abstract":"<div><div>This is a collection of open problems related to/presented at the 1st Chinese–Southeasteuropean conference on discrete mathematics and applications that was held at Serbian Academy of Sciences and Arts in Belgrade, Serbia, from June 9–14, 2024.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"371 ","pages":"Pages 99-104"},"PeriodicalIF":1.0,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143739099","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Edge isoperimetric method: At least 2/3 of h-extra edge-connectivity of a kind of cube-based graphs concentrates on 2n−1
IF 1 3区 数学
Discrete Applied Mathematics Pub Date : 2025-03-30 DOI: 10.1016/j.dam.2025.03.019
Mingzu Zhang , Hongxi Liu , Chia-Wei Lee , Weihua Yang
{"title":"Edge isoperimetric method: At least 2/3 of h-extra edge-connectivity of a kind of cube-based graphs concentrates on 2n−1","authors":"Mingzu Zhang ,&nbsp;Hongxi Liu ,&nbsp;Chia-Wei Lee ,&nbsp;Weihua Yang","doi":"10.1016/j.dam.2025.03.019","DOIUrl":"10.1016/j.dam.2025.03.019","url":null,"abstract":"&lt;div&gt;&lt;div&gt;The edge isopermetric problem on hypercube &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;Q&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt;, proposed by Harper in 1964, is to find a vertex subset with cardinality &lt;span&gt;&lt;math&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; in &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;Q&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt;, such that the edge cut separating any vertex subset with cardinality &lt;span&gt;&lt;math&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; from its complement has minimum size. Since Harper, Lindsey, Bernstein and Hart solved the edge isoperimetric problem of &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;Q&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; by lexicographic order, the edge isoperimetric problem is intimately tied to many-to-many disjoint paths problem. The maximum cardinality of edge disjoint paths connecting any two disjoint connected subgraphs of order &lt;span&gt;&lt;math&gt;&lt;mi&gt;h&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; in a connected graph &lt;span&gt;&lt;math&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; can be defined by the minimum modified edge-cut, called the &lt;span&gt;&lt;math&gt;&lt;mi&gt;h&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;-extra edge-connectivity of &lt;span&gt;&lt;math&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;. It is the cardinality of the minimum set of edges in a connected graph &lt;span&gt;&lt;math&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;, if such a set exists, whose deletion disconnects &lt;span&gt;&lt;math&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; and leaves every remaining component with at least &lt;span&gt;&lt;math&gt;&lt;mi&gt;h&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; vertices. The &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;-enhanced hypercubes &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;Q&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; are constructed by adding a matching between some pair copies of &lt;span&gt;&lt;math&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; dimensional subcubes &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;Q&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; with &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;≤&lt;/mo&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;mo&gt;≤&lt;/mo&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;. The distribution of the values of the &lt;span&gt;&lt;math&gt;&lt;mi&gt;h&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;-extra edge-connectivity on a recursive graph is uneven and presents a concentration phenomenon. In this paper, we start with analysing the fractal properties of the optimal solution of the edge isoperimetric problem of &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;Q&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt;. And it is shown that although the members of &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;Q&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; are not isomorphic to each other according to different &lt;span&gt;&lt;math&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; where &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mo&gt;≤&lt;/mo&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;mo&gt;≤&lt;/mo&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;, when &lt;span&gt;&lt;math&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; approaches infinity, the &lt;span&gt;&lt;math&gt;&lt;mi&gt;h&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;-extra edge-connectivity of &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;-enhanced hypercubes presents a concentration phenome","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"370 ","pages":"Pages 167-174"},"PeriodicalIF":1.0,"publicationDate":"2025-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143734923","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An exact algorithm for the adjacent vertex distinguishing sum edge coloring problem
IF 1 3区 数学
Discrete Applied Mathematics Pub Date : 2025-03-29 DOI: 10.1016/j.dam.2025.03.029
Brian Curcio, Isabel Méndez-Díaz, Paula Zabala
{"title":"An exact algorithm for the adjacent vertex distinguishing sum edge coloring problem","authors":"Brian Curcio,&nbsp;Isabel Méndez-Díaz,&nbsp;Paula Zabala","doi":"10.1016/j.dam.2025.03.029","DOIUrl":"10.1016/j.dam.2025.03.029","url":null,"abstract":"<div><div>In this work we define the <em>adjacent vertex distinguishing sum edge coloring problem</em>. This problem consists of finding an assignment of colors to the edges of a graph with the following constraints: every pair of adjacent edges must have a different color, and every pair of adjacent vertices must not have the same set of colors assigned to the edges incident to each. The goal is to minimize the sum of the colors in an edge coloring that satisfies these constraints. This problem is a special case of a large family of problems known as <em>graph labeling</em>, which is a widely used and very popular set of tools to build abstract models for problems that arise in everyday life.</div><div>Some variants of <em>graph labeling problems</em> have been successfully addressed with mixed-integer linear programming (MIP) techniques based on a polyhedral characterization of the set of feasible solutions. We use this approach to develop a <em>Branch and Cut</em> algorithm to solve the problem.</div><div>We propose two MIP models that are computationally evaluated to choose the most promising one and continue with a polyhedral study. This analysis aims to characterize valid inequalities that strengthen the formulation in the hope of improving the algorithm’s performance. These inequalities are added on demand as cutting planes using exact and heuristic separation algorithms. Additionally, we considered the use of an initial heuristic and a specific branching strategy.</div><div>The results show that the algorithm developed allows us to solve instances that were unsolvable using general-purpose solvers. Our polyhedral study and the addition of cutting planes have proved to be crucial factors in solving the most challenging instances.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"371 ","pages":"Pages 80-98"},"PeriodicalIF":1.0,"publicationDate":"2025-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143734795","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A simplified graph parameter and its relationship to the modified Randić index
IF 1 3区 数学
Discrete Applied Mathematics Pub Date : 2025-03-28 DOI: 10.1016/j.dam.2025.03.030
Dazhi Lin , Tao Wang
{"title":"A simplified graph parameter and its relationship to the modified Randić index","authors":"Dazhi Lin ,&nbsp;Tao Wang","doi":"10.1016/j.dam.2025.03.030","DOIUrl":"10.1016/j.dam.2025.03.030","url":null,"abstract":"<div><div>Recently, Lin introduced a new graph parameter <span><math><mi>ξ</mi></math></span> defined by nine properties and established the inequality <span><math><mrow><mi>ξ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≤</mo><mn>2</mn><mi>H</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>, where <span><math><mrow><mi>H</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> is the harmonic index of <span><math><mi>G</mi></math></span>. In this note, we simplify the framework by reducing the required properties to five, defining a new parameter <span><math><mi>ζ</mi></math></span>. We prove <span><math><mrow><mi>ζ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≤</mo><mn>2</mn><msup><mrow><mi>R</mi></mrow><mrow><mo>′</mo></mrow></msup><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>, where <span><math><mrow><msup><mrow><mi>R</mi></mrow><mrow><mo>′</mo></mrow></msup><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> is the modified Randić index, and characterize the equality case. It is known that <span><math><mrow><msup><mrow><mi>R</mi></mrow><mrow><mo>′</mo></mrow></msup><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≤</mo><mi>H</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≤</mo><mi>R</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>. Then <span><math><mrow><mi>ζ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≤</mo><mn>2</mn><msup><mrow><mi>R</mi></mrow><mrow><mo>′</mo></mrow></msup><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≤</mo><mn>2</mn><mi>H</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≤</mo><mn>2</mn><mi>R</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>. Since <span><math><mi>ζ</mi></math></span> needs fewer properties than <span><math><mi>ξ</mi></math></span>, it has a high possibility that many known parameters satisfy the demands of <span><math><mi>ζ</mi></math></span>.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"371 ","pages":"Pages 60-64"},"PeriodicalIF":1.0,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143715403","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Generalized competitively orientable complete multipartite graphs
IF 1 3区 数学
Discrete Applied Mathematics Pub Date : 2025-03-28 DOI: 10.1016/j.dam.2025.03.031
Myungho Choi
{"title":"Generalized competitively orientable complete multipartite graphs","authors":"Myungho Choi","doi":"10.1016/j.dam.2025.03.031","DOIUrl":"10.1016/j.dam.2025.03.031","url":null,"abstract":"<div><div>We say that a digraph <span><math><mi>D</mi></math></span> is <span><math><mrow><mo>(</mo><mi>i</mi><mo>,</mo><mi>j</mi><mo>)</mo></mrow></math></span>-step competitive if any two vertices have an <span><math><mrow><mo>(</mo><mi>i</mi><mo>,</mo><mi>j</mi><mo>)</mo></mrow></math></span>-step common out-neighbor in <span><math><mi>D</mi></math></span> and that a graph <span><math><mi>G</mi></math></span> is <span><math><mrow><mo>(</mo><mi>i</mi><mo>,</mo><mi>j</mi><mo>)</mo></mrow></math></span>-step competitively orientable if there exists an <span><math><mrow><mo>(</mo><mi>i</mi><mo>,</mo><mi>j</mi><mo>)</mo></mrow></math></span>-step competitive orientation of <span><math><mi>G</mi></math></span>.</div><div>In Choi et al. (2022), Choi et al. introduce the notion of the competitive digraph and completely characterize competitively orientable complete multipartite graphs in terms of the sizes of its partite sets. Here, a competitive digraph means a <span><math><mrow><mo>(</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo>)</mo></mrow></math></span>-step competitive digraph. In this paper, the result of Choi et al. has been extended to a general characterization of <span><math><mrow><mo>(</mo><mi>i</mi><mo>,</mo><mi>j</mi><mo>)</mo></mrow></math></span>-step competitively orientable complete multipartite graphs.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"371 ","pages":"Pages 65-72"},"PeriodicalIF":1.0,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143715404","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On irredundance coloring and irredundance compelling coloring of graphs
IF 1 3区 数学
Discrete Applied Mathematics Pub Date : 2025-03-28 DOI: 10.1016/j.dam.2025.03.025
David Ashok Kalarkop , Michael A. Henning , Ismail Sahul Hamid , Pawaton Kaemawichanurat
{"title":"On irredundance coloring and irredundance compelling coloring of graphs","authors":"David Ashok Kalarkop ,&nbsp;Michael A. Henning ,&nbsp;Ismail Sahul Hamid ,&nbsp;Pawaton Kaemawichanurat","doi":"10.1016/j.dam.2025.03.025","DOIUrl":"10.1016/j.dam.2025.03.025","url":null,"abstract":"<div><div>An irredundance coloring of a graph <span><math><mi>G</mi></math></span> is a proper coloring admitting a maximal irredundant set all of whose vertices receive different colors. The minimum number of colors required for an irredundance coloring of <span><math><mi>G</mi></math></span> is called the <em>irredundance chromatic number</em> of <span><math><mi>G</mi></math></span>, and is denoted by <span><math><mrow><msub><mrow><mi>χ</mi></mrow><mrow><mi>i</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>. An irredundance compelling coloring of <span><math><mi>G</mi></math></span> is a proper coloring of <span><math><mi>G</mi></math></span> in which every rainbow committee (a set consisting of one vertex of each color) is an irredundant set of <span><math><mi>G</mi></math></span>. The maximum number of colors required for an irredundance compelling coloring of <span><math><mi>G</mi></math></span> is called the <em>irredundance compelling chromatic number</em> of <span><math><mi>G</mi></math></span>, and is denoted by <span><math><mrow><msub><mrow><mi>χ</mi></mrow><mrow><mi>i</mi><mi>r</mi><mi>c</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>. We make a detailed study of <span><math><mrow><msub><mrow><mi>χ</mi></mrow><mrow><mi>i</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>, <span><math><mrow><msub><mrow><mi>χ</mi></mrow><mrow><mi>i</mi><mi>r</mi><mi>c</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>, derive bounds on these parameters and characterize extremal graphs attaining the bounds.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"369 ","pages":"Pages 149-161"},"PeriodicalIF":1.0,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143715628","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Measures of closeness to cordiality for graphs
IF 1 3区 数学
Discrete Applied Mathematics Pub Date : 2025-03-28 DOI: 10.1016/j.dam.2025.03.012
Anand Brahmbhatt , Kartikeya Rai , Amitabha Tripathi
{"title":"Measures of closeness to cordiality for graphs","authors":"Anand Brahmbhatt ,&nbsp;Kartikeya Rai ,&nbsp;Amitabha Tripathi","doi":"10.1016/j.dam.2025.03.012","DOIUrl":"10.1016/j.dam.2025.03.012","url":null,"abstract":"<div><div>A graph <span><math><mi>G</mi></math></span> is cordial if there exists a function <span><math><mi>f</mi></math></span> from the vertices of <span><math><mi>G</mi></math></span> to <span><math><mrow><mo>{</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>}</mo></mrow></math></span> such that the number of vertices labelled 0 and the number of vertices labelled 1 differ by at most 1, and if we assign to each edge <span><math><mrow><mi>x</mi><mi>y</mi></mrow></math></span> the label <span><math><mrow><mo>|</mo><mi>f</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>−</mo><mi>f</mi><mrow><mo>(</mo><mi>y</mi><mo>)</mo></mrow><mo>|</mo></mrow></math></span>, the number of edges labelled 0 and the number of edges labelled 1 also differ at most by 1. We introduce two measures of how close a graph is to being cordial, and compute these measures for a variety of classes of graphs.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"370 ","pages":"Pages 157-166"},"PeriodicalIF":1.0,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143715551","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Some new bounds for the energy of graphs
IF 1 3区 数学
Discrete Applied Mathematics Pub Date : 2025-03-28 DOI: 10.1016/j.dam.2025.03.022
Jiuying Dong, Yingying Yao
{"title":"Some new bounds for the energy of graphs","authors":"Jiuying Dong,&nbsp;Yingying Yao","doi":"10.1016/j.dam.2025.03.022","DOIUrl":"10.1016/j.dam.2025.03.022","url":null,"abstract":"<div><div>Let <span><math><mi>G</mi></math></span> be a graph with <span><math><mi>n</mi></math></span> vertices and <span><math><mi>m</mi></math></span> edges. The energy of a graph <span><math><mi>G</mi></math></span> is defined as the sum of absolute values of the eigenvalues about its adjacency matrix, i.e. <span><math><mrow><mi>ɛ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>=</mo><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>n</mi></mrow></msubsup><mrow><mo>|</mo><msub><mrow><mi>λ</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>|</mo></mrow></mrow></math></span>. In this paper, we derive some new upper bounds on the graph energy based on a new formula and some inequalities for calculating the graph energy, and characterize the extremal graphs. In addition, we propose some new lower bounds for the graph energy involving order <span><math><mi>n</mi></math></span>, the size <span><math><mi>m</mi></math></span>, the eigenvalue with maximum absolute value <span><math><msub><mrow><mi>λ</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> and the eigenvalue with minimum absolute value <span><math><msub><mrow><mi>λ</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> of the graph <span><math><mi>G</mi></math></span>, and characterize the extremal graphs.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"371 ","pages":"Pages 73-79"},"PeriodicalIF":1.0,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143715514","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Preprocessing complexity for some graph problems parameterized by structural parameters
IF 1 3区 数学
Discrete Applied Mathematics Pub Date : 2025-03-25 DOI: 10.1016/j.dam.2025.03.023
Manuel Lafond, Weidong Luo
{"title":"Preprocessing complexity for some graph problems parameterized by structural parameters","authors":"Manuel Lafond,&nbsp;Weidong Luo","doi":"10.1016/j.dam.2025.03.023","DOIUrl":"10.1016/j.dam.2025.03.023","url":null,"abstract":"<div><div>Structural graph parameters play an important role in parameterized complexity, including in kernelization. Notably, vertex cover, neighborhood diversity, twin-cover, and modular-width have been studied extensively in the last few years. However, there are many fundamental problems whose preprocessing complexity is not fully understood under these parameters. Indeed, the existence of polynomial kernels or polynomial Turing kernels for famous problems such as <span>Clique</span>, <span>Chromatic Number</span>, and <span>Steiner Tree</span> has only been established for a subset of structural parameters. In this work, we use several techniques to obtain a complete preprocessing complexity landscape for over a dozen of fundamental algorithmic problems.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"371 ","pages":"Pages 46-59"},"PeriodicalIF":1.0,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143696945","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bounds on the Aα-spectral radius of uniform hypergraphs with some vertices deleted
IF 1 3区 数学
Discrete Applied Mathematics Pub Date : 2025-03-25 DOI: 10.1016/j.dam.2025.03.020
Peng-Li Zhang , Xiao-Dong Zhang
{"title":"Bounds on the Aα-spectral radius of uniform hypergraphs with some vertices deleted","authors":"Peng-Li Zhang ,&nbsp;Xiao-Dong Zhang","doi":"10.1016/j.dam.2025.03.020","DOIUrl":"10.1016/j.dam.2025.03.020","url":null,"abstract":"<div><div>Let <span><math><mrow><mi>D</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><mi>A</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> be the diagonal and adjacency tensors of a <span><math><mi>k</mi></math></span>-uniform hypergraph <span><math><mrow><mi>G</mi><mo>,</mo></mrow></math></span> respectively. The <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>α</mi></mrow></msub></math></span>-spectral radius of <span><math><mi>G</mi></math></span> is defined as the spectral radius of the tensor <span><math><mrow><msub><mrow><mi>A</mi></mrow><mrow><mi>α</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>=</mo><mi>α</mi><mi>D</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>+</mo><mrow><mo>(</mo><mn>1</mn><mo>−</mo><mi>α</mi><mo>)</mo></mrow><mi>A</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>,</mo></mrow></math></span> where <span><math><mrow><mn>0</mn><mo>≤</mo><mi>α</mi><mo>&lt;</mo><mn>1</mn><mo>.</mo></mrow></math></span> In this paper, we obtain an interlacing inequality on the spectral radius of a principal subtensor for a nonnegative weakly irreducible symmetric tensor, which is used to present several sharp lower bounds for the <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>α</mi></mrow></msub></math></span>-spectral radius of any subhypergraph <span><math><mrow><mi>G</mi><mo>−</mo><mi>S</mi></mrow></math></span> of a connected <span><math><mi>k</mi></math></span>-uniform hypergraph <span><math><mi>G</mi></math></span> in terms of the principal eigenvector associated with the <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>α</mi></mrow></msub></math></span>-spectral radius of <span><math><mi>G</mi></math></span>, degrees and co-degrees, where <span><math><mi>S</mi></math></span> is a subset of <span><math><mrow><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>. They extend and strengthen some known results.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"371 ","pages":"Pages 1-16"},"PeriodicalIF":1.0,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143696939","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信