Péter Csikvári , Ivan Damnjanović , Marko Milošević , Ivan Stanković , Dragan Stevanović
{"title":"Classification of borderenergetic chemical graphs and borderenergetic graphs of order 12","authors":"Péter Csikvári , Ivan Damnjanović , Marko Milošević , Ivan Stanković , Dragan Stevanović","doi":"10.1016/j.dam.2025.07.035","DOIUrl":"10.1016/j.dam.2025.07.035","url":null,"abstract":"<div><div>The energy <span><math><mrow><mi>E</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> of a simple graph <span><math><mi>G</mi></math></span> is the sum of absolute values of the eigenvalues of its adjacency matrix. A borderenergetic graph of order <span><math><mrow><mi>n</mi><mo>∈</mo><mi>N</mi></mrow></math></span> is any noncomplete graph <span><math><mi>G</mi></math></span> such that <span><math><mrow><mi>E</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>=</mo><mi>E</mi><mrow><mo>(</mo><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></mrow><mo>=</mo><mn>2</mn><mi>n</mi><mo>−</mo><mn>2</mn></mrow></math></span>. Here we combine two-phase computer-assisted search with theoretical arguments to show that there are only three borderenergetic chemical graphs, thus completing the earlier findings of Li et al. (2017). We perform two-phase computer-assisted search to also find all 566 borderenergetic graphs of order 12, thereby correcting and extending the results from a previous search performed by Furtula and Gutman (2017).</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"376 ","pages":"Pages 394-403"},"PeriodicalIF":1.0,"publicationDate":"2025-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144750450","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Scheduling sports tournaments with two court types","authors":"Sigrid Knust , Melissa Koch , Xuan Thanh Le","doi":"10.1016/j.dam.2025.07.018","DOIUrl":"10.1016/j.dam.2025.07.018","url":null,"abstract":"<div><div>In this paper, we introduce a new variant of a sports tournament scheduling problem where additionally courts of two different types are considered. The goal is to find a schedule for a single round robin tournament where the total number of consecutive matches on the same court type for the players is minimized. We propose efficient construction methods to obtain optimal solutions for different cases.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"376 ","pages":"Pages 404-426"},"PeriodicalIF":1.0,"publicationDate":"2025-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144724956","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Meiqin Wei , Bohua Fan , Changhong Lu , Jun Yue , Jinfeng Liu
{"title":"The edge metric dimensions of convex polytopes","authors":"Meiqin Wei , Bohua Fan , Changhong Lu , Jun Yue , Jinfeng Liu","doi":"10.1016/j.dam.2025.07.027","DOIUrl":"10.1016/j.dam.2025.07.027","url":null,"abstract":"<div><div>Let <span><math><mrow><mi>G</mi><mo>=</mo><mrow><mo>(</mo><mi>V</mi><mo>,</mo><mi>E</mi><mo>)</mo></mrow></mrow></math></span> be a connected graph. A vertex <span><math><mrow><mi>x</mi><mo>∈</mo><mi>V</mi></mrow></math></span> distinguishes the edge pair <span><math><mrow><msub><mrow><mi>e</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>e</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>∈</mo><mi>E</mi></mrow></math></span> if the distances from <span><math><mi>x</mi></math></span> to <span><math><msub><mrow><mi>e</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>e</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> are distinct. A vertex subset <span><math><mrow><mi>S</mi><mo>⊆</mo><mi>V</mi></mrow></math></span> is an edge metric generator of <span><math><mi>G</mi></math></span> if any pair of edges in <span><math><mi>E</mi></math></span> can be distinguished by some element of <span><math><mi>S</mi></math></span>. The minimum size of an edge metric generator of <span><math><mi>G</mi></math></span> is called the edge metric dimension of <span><math><mi>G</mi></math></span> and denoted by <span><math><mrow><mi>e</mi><mi>d</mi><mi>i</mi><mi>m</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>. In this paper, we determine the exact values of the edge metric dimensions for some convex polytopes and generalized convex polytopes, which further emphasize the fact that there are families of convex polytopes having greater edge metric dimensions than their metric dimensions. The proof methods in this paper are constructive and they can be implemented through algorithms.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"378 ","pages":"Pages 294-306"},"PeriodicalIF":1.0,"publicationDate":"2025-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144724344","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Perfect k-matching, k-factor-critical and Aα-spectral radius","authors":"Mengyuan Niu , Shanshan Zhang , Xiumei Wang","doi":"10.1016/j.dam.2025.07.020","DOIUrl":"10.1016/j.dam.2025.07.020","url":null,"abstract":"<div><div>A <span><math><mi>k</mi></math></span>-<em>matching</em> of a graph <span><math><mi>G</mi></math></span> is a function <span><math><mi>f</mi></math></span>: <span><math><mrow><mi>E</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>→</mo><mrow><mo>{</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>k</mi><mo>}</mo></mrow></mrow></math></span> satisfying <span><math><mrow><munder><mrow><mo>∑</mo></mrow><mrow><mi>e</mi><mo>∈</mo><mi>∂</mi><mrow><mo>(</mo><mi>v</mi><mo>)</mo></mrow></mrow></munder><mi>f</mi><mrow><mo>(</mo><mi>e</mi><mo>)</mo></mrow><mo>≤</mo><mi>k</mi></mrow></math></span> for any vertex <span><math><mrow><mi>v</mi><mo>∈</mo><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>. A <span><math><mi>k</mi></math></span>-matching of a graph <span><math><mi>G</mi></math></span> is <em>perfect</em> if <span><math><mrow><munder><mrow><mo>∑</mo></mrow><mrow><mi>e</mi><mo>∈</mo><mi>∂</mi><mrow><mo>(</mo><mi>v</mi><mo>)</mo></mrow></mrow></munder><mi>f</mi><mrow><mo>(</mo><mi>e</mi><mo>)</mo></mrow><mo>=</mo><mi>k</mi></mrow></math></span> for every vertex <span><math><mrow><mi>v</mi><mo>∈</mo><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>. A graph <span><math><mi>G</mi></math></span> of order <span><math><mi>n</mi></math></span> is <em>k-factor-critical</em> if the removal of any set of <span><math><mi>k</mi></math></span> vertices of <span><math><mi>G</mi></math></span> results in a graph with a perfect matching. Let <span><math><mrow><mi>A</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><mi>D</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> be the adjacency matrix and the degree diagonal matrix of <span><math><mi>G</mi></math></span>. For <span><math><mrow><mi>α</mi><mo>∈</mo><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow></mrow></math></span>, Nikiforov <span><math><mrow><mo>(</mo><mn>2017</mn><mo>)</mo></mrow></math></span> introduced the <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>α</mi></mrow></msub></math></span>-matrix of G as follows: <span><math><mrow><msub><mrow><mi>A</mi></mrow><mrow><mi>α</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>=</mo><mi>α</mi><mi>D</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>+</mo><mrow><mo>(</mo><mn>1</mn><mo>−</mo><mi>α</mi><mo>)</mo></mrow><mi>A</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>.</mo></mrow></math></span> In this paper, according to the <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>α</mi></mrow></msub></math></span>-spectral radius, we provide two sufficient conditions to ensure that a graph is <span><math><mi>k</mi></math></span>-factor-critical and has a perfect <span><math><mi>k</mi></math></span>-matching, respectively.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"376 ","pages":"Pages 384-393"},"PeriodicalIF":1.0,"publicationDate":"2025-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144721096","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Sequential testing problem: A follow-up review","authors":"Tonguç Ünlüyurt","doi":"10.1016/j.dam.2025.07.039","DOIUrl":"10.1016/j.dam.2025.07.039","url":null,"abstract":"<div><div>This review aims to provide a comprehensive update on the progress made on the Sequential Testing problem (STP) in the last 20 years after the review, Ünlüyurt (2004) was published. Many studies have provided new theoretical results, extensions of the problem, and new applications. In this review, we pinpoint the main results and discuss the relations between the problems studied. We also provide possible research directions for the problem.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"377 ","pages":"Pages 356-369"},"PeriodicalIF":1.0,"publicationDate":"2025-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144713417","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Marc Demange , Alessia Di Fonso , Gabriele Di Stefano , Pierpaolo Vittorini
{"title":"About the infinite windy firebreak location problem","authors":"Marc Demange , Alessia Di Fonso , Gabriele Di Stefano , Pierpaolo Vittorini","doi":"10.1016/j.dam.2025.07.028","DOIUrl":"10.1016/j.dam.2025.07.028","url":null,"abstract":"<div><div>The severity of wildfires can be mitigated using preventive measures like the construction of firebreaks, which are strips of land from which the vegetation is completely removed. In this paper, we model the problem of wildfire containment as an optimization problem on infinite graphs called <span>Infinite Windy Firebreak Location</span>. A land of unknown size is modeled as an infinite undirected graph in which the vertices correspond to areas subject to fire and edges represent fire propagation from one area to another. A firebreak construction is modeled as removing the edge between two vertices. The number of firebreaks that can be installed depends on budget constraints. We assume that a fire ignites in a subset of vertices and propagates to the neighbors. The goal is to select a subset of edges to remove in order to contain the fire and avoid burning an infinite part of the graph. We prove that <span>Infinite Windy Firebreak Location</span> is coNP-complete in restricted cases, and we address some polynomial cases. We show that <span>Infinite Windy Firebreak Location</span> polynomially reduces to <span>Min Cut</span> for certain classes of graphs like infinite grid graphs and polyomino-grids.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"378 ","pages":"Pages 280-293"},"PeriodicalIF":1.0,"publicationDate":"2025-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144714080","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A note on obtaining bipartite radio graceful graphs of arbitrarily large radio numbers with radio graceful complements","authors":"Ushnish Sarkar","doi":"10.1016/j.dam.2025.07.012","DOIUrl":"10.1016/j.dam.2025.07.012","url":null,"abstract":"<div><div>Motivated by the frequency assignment problem (FAP), a radio coloring of a graph <span><math><mi>G</mi></math></span> is an assignment <span><math><mi>f</mi></math></span> of non-negative integers to the vertices of <span><math><mi>G</mi></math></span> satisfying the condition <span><math><mrow><mrow><mo>|</mo><mi>f</mi><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow><mo>−</mo><mi>f</mi><mrow><mo>(</mo><mi>v</mi><mo>)</mo></mrow><mo>|</mo></mrow><mo>+</mo><mi>d</mi><mrow><mo>(</mo><mi>u</mi><mo>,</mo><mi>v</mi><mo>)</mo></mrow><mo>≥</mo><mtext>diameter of</mtext><mspace></mspace><mi>G</mi><mo>+</mo><mn>1</mn></mrow></math></span>, where <span><math><mrow><mi>d</mi><mrow><mo>(</mo><mi>u</mi><mo>,</mo><mi>v</mi><mo>)</mo></mrow></mrow></math></span> is the distance between any two vertices <span><math><mi>u</mi></math></span> and <span><math><mi>v</mi></math></span> of the graph <span><math><mi>G</mi></math></span>. The span of a radio coloring of <span><math><mi>G</mi></math></span> is the difference of the maximum and minimum non-negative integers used as colors. The minimum span of a radio coloring of <span><math><mi>G</mi></math></span> is referred as the radio number of <span><math><mi>G</mi></math></span>. Any radio coloring with the minimum span is referred as an optimal radio coloring of <span><math><mi>G</mi></math></span>. If an optimal radio coloring of <span><math><mrow><mi>G</mi><mo>=</mo><mrow><mo>(</mo><mi>V</mi><mo>,</mo><mi>E</mi><mo>)</mo></mrow></mrow></math></span> is a bijection from <span><math><mi>V</mi></math></span> to <span><math><mrow><mo>{</mo><mn>0</mn><mo>,</mo><mspace></mspace><mn>1</mn><mo>,</mo><mspace></mspace><mo>…</mo><mo>,</mo><mspace></mspace><mrow><mo>|</mo><mi>V</mi><mo>|</mo></mrow><mo>−</mo><mn>1</mn><mo>}</mo></mrow></math></span>, then the graph is referred as radio graceful. In this article, using a recursive construction, we have shown that for each positive integer <span><math><mrow><mi>n</mi><mo>≥</mo><mn>9</mn></mrow></math></span>, there exists a bipartite graph <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> with <span><math><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></math></span> vertices such that both <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> and its complement <span><math><msubsup><mrow><mi>G</mi></mrow><mrow><mi>n</mi></mrow><mrow><mi>c</mi></mrow></msubsup></math></span> are radio graceful graphs. In the process, we show that each such <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> and <span><math><msubsup><mrow><mi>G</mi></mrow><mrow><mi>n</mi></mrow><mrow><mi>c</mi></mrow></msubsup></math></span> contain a Hamiltonian path.</div><div>Note that our construction obtains radio graceful graphs of arbitrarily large radio numbers without going for big cliques. This has an interesting similarity with the motivation behind the Mycielski’s construction which ensures the exis","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"377 ","pages":"Pages 350-355"},"PeriodicalIF":1.0,"publicationDate":"2025-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144712954","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Some novel minimax results for perfect matchings of polyomino graphs","authors":"Chunhu Sun , Heping Zhang","doi":"10.1016/j.dam.2025.07.030","DOIUrl":"10.1016/j.dam.2025.07.030","url":null,"abstract":"<div><div>Let <span><math><mi>G</mi></math></span> be a graph with a perfect matching <span><math><mi>M</mi></math></span>. The forcing number of <span><math><mi>M</mi></math></span> in <span><math><mi>G</mi></math></span>, denoted by <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>G</mi><mo>,</mo><mi>M</mi><mo>)</mo></mrow></mrow></math></span>, is the minimal size of an edge subset of <span><math><mi>M</mi></math></span> that are contained in no other perfect matchings of <span><math><mi>G</mi></math></span>, and the anti-forcing number of <span><math><mi>M</mi></math></span> in <span><math><mi>G</mi></math></span>, denoted by <span><math><mrow><mi>a</mi><mi>f</mi><mrow><mo>(</mo><mi>G</mi><mo>,</mo><mi>M</mi><mo>)</mo></mrow></mrow></math></span>, is the minimal size of an edge subset of <span><math><mrow><mi>E</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> whose deletion results in a subgraph with a unique perfect matching <span><math><mi>M</mi></math></span>. For a polyomino graph <span><math><mi>P</mi></math></span>, Zhou and Zhang (2016) established a minimax result: For every perfect matching <span><math><mi>M</mi></math></span> of <span><math><mi>P</mi></math></span> with the maximum forcing number or minus one, <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>P</mi><mo>,</mo><mi>M</mi><mo>)</mo></mrow></mrow></math></span> is equal to the maximum number of disjoint <span><math><mi>M</mi></math></span>-alternating squares in <span><math><mi>P</mi></math></span>. In this paper, we show that for every perfect matching <span><math><mi>M</mi></math></span> of a polyomino graph <span><math><mi>P</mi></math></span> which contains no 3 × 3 chessboard as a nice subgraph, <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>P</mi><mo>,</mo><mi>M</mi><mo>)</mo></mrow></mrow></math></span> is equal to the maximum number of disjoint <span><math><mi>M</mi></math></span>-alternating squares in <span><math><mi>P</mi></math></span>. Further we show that for every perfect matching <span><math><mi>M</mi></math></span> of <span><math><mi>P</mi></math></span>, <span><math><mrow><mi>a</mi><mi>f</mi><mrow><mo>(</mo><mi>P</mi><mo>,</mo><mi>M</mi><mo>)</mo></mrow></mrow></math></span> always equals the number of <span><math><mi>M</mi></math></span>-alternating squares of <span><math><mi>P</mi></math></span> if and only if <span><math><mi>P</mi></math></span> has no 1 × 3 chessboard as a nice subgraph.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"378 ","pages":"Pages 270-279"},"PeriodicalIF":1.0,"publicationDate":"2025-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144714079","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On z-coloring and b∗-coloring of graphs as improved variants of the b-coloring","authors":"Manouchehr Zaker","doi":"10.1016/j.dam.2025.07.036","DOIUrl":"10.1016/j.dam.2025.07.036","url":null,"abstract":"<div><div>Let <span><math><mi>G</mi></math></span> be a simple graph and <span><math><mi>c</mi></math></span> a proper vertex coloring of <span><math><mi>G</mi></math></span>. A vertex <span><math><mi>u</mi></math></span> is called b-vertex in <span><math><mrow><mo>(</mo><mi>G</mi><mo>,</mo><mi>c</mi><mo>)</mo></mrow></math></span> if all colors except <span><math><mrow><mi>c</mi><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow></mrow></math></span> appear in the neighborhood of <span><math><mi>u</mi></math></span>. By a <span><math><msup><mrow><mi>b</mi></mrow><mrow><mo>∗</mo></mrow></msup></math></span>-coloring of <span><math><mi>G</mi></math></span> using colors <span><math><mrow><mo>{</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>k</mi><mo>}</mo></mrow></math></span> we define a proper vertex coloring <span><math><mi>c</mi></math></span> such that there is a b-vertex <span><math><mi>u</mi></math></span> (called nice vertex) such that <span><math><mi>u</mi></math></span> is adjacent to a b-vertex of color <span><math><mi>j</mi></math></span> for each <span><math><mrow><mi>j</mi><mo>∈</mo><mrow><mo>{</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>k</mi><mo>}</mo></mrow></mrow></math></span> with <span><math><mrow><mi>j</mi><mo>≠</mo><mi>c</mi><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow></mrow></math></span>. The <span><math><msup><mrow><mi>b</mi></mrow><mrow><mo>∗</mo></mrow></msup></math></span>-chromatic number of <span><math><mi>G</mi></math></span>, denoted by <span><math><mrow><msup><mrow><mi>b</mi></mrow><mrow><mo>∗</mo></mrow></msup><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> is the largest integer <span><math><mi>k</mi></math></span> such that <span><math><mi>G</mi></math></span> has a <span><math><msup><mrow><mi>b</mi></mrow><mrow><mo>∗</mo></mrow></msup></math></span>-coloring using <span><math><mi>k</mi></math></span> colors. Every graph <span><math><mi>G</mi></math></span> admits a <span><math><msup><mrow><mi>b</mi></mrow><mrow><mo>∗</mo></mrow></msup></math></span>-coloring which is an improvement over the famous b-coloring. A z-coloring of <span><math><mi>G</mi></math></span> is a coloring <span><math><mi>c</mi></math></span> using colors <span><math><mrow><mo>{</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>k</mi><mo>}</mo></mrow></math></span> containing a nice vertex of color <span><math><mi>k</mi></math></span> such that for each two colors <span><math><mrow><mi>i</mi><mo><</mo><mi>j</mi></mrow></math></span>, each vertex of color <span><math><mi>j</mi></math></span> has a neighbor of color <span><math><mi>i</mi></math></span> in the graph (i.e. <span><math><mi>c</mi></math></span> is obtained from a Grundy-coloring of <span><math><mi>G</mi></math></span>). We prove that <span><math><mrow><msup><mrow><mi>b</mi></mrow><mrow><mo>∗</mo></mrow></msup><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> cannot be approximated within any constant factor unless <span><math><mrow><","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"377 ","pages":"Pages 370-379"},"PeriodicalIF":1.0,"publicationDate":"2025-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144713418","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}