Discrete Applied Mathematics最新文献

筛选
英文 中文
Spanning trees of bipartite graphs with a bounded number of leaves and branch vertices
IF 1 3区 数学
Discrete Applied Mathematics Pub Date : 2024-12-12 DOI: 10.1016/j.dam.2024.12.004
Xinyu Huang, Zheng Yan
{"title":"Spanning trees of bipartite graphs with a bounded number of leaves and branch vertices","authors":"Xinyu Huang,&nbsp;Zheng Yan","doi":"10.1016/j.dam.2024.12.004","DOIUrl":"10.1016/j.dam.2024.12.004","url":null,"abstract":"<div><div>Let <span><math><mi>T</mi></math></span> be a tree, a vertex of <span><math><mi>T</mi></math></span> with degree one is often called a <em>leaf</em> of <span><math><mi>T</mi></math></span>, and a vertex of degree at least three is a <em>branch vertex</em> of <span><math><mi>T</mi></math></span>. We prove the following theorem. Let <span><math><mrow><mi>k</mi><mo>≥</mo><mn>2</mn></mrow></math></span> be an integer and <span><math><mi>G</mi></math></span> be a connected bipartite graph with bipartition <span><math><mrow><mo>(</mo><mi>A</mi><mo>,</mo><mi>B</mi><mo>)</mo></mrow></math></span> such that <span><math><mrow><mrow><mo>|</mo><mi>A</mi><mo>|</mo></mrow><mo>≤</mo><mrow><mo>|</mo><mi>B</mi><mo>|</mo></mrow><mo>≤</mo><mrow><mo>|</mo><mi>A</mi><mo>|</mo></mrow><mo>+</mo><mi>k</mi><mo>−</mo><mn>1</mn></mrow></math></span>. If <span><math><mrow><msub><mrow><mi>σ</mi></mrow><mrow><mn>1</mn><mo>,</mo><mn>1</mn></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≥</mo><mrow><mo>|</mo><mi>B</mi><mo>|</mo></mrow></mrow></math></span>, then <span><math><mi>G</mi></math></span> has a spanning tree with few branch vertices and leaves, where <span><math><mrow><msub><mrow><mi>σ</mi></mrow><mrow><mn>1</mn><mo>,</mo><mn>1</mn></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> denotes the minimum degree sum of two non-adjacent vertices taken from <span><math><mi>A</mi></math></span> and <span><math><mi>B</mi></math></span>, respectively. Moreover, the condition on <span><math><mrow><msub><mrow><mi>σ</mi></mrow><mrow><mn>1</mn><mo>,</mo><mn>1</mn></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> is sharp.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"363 ","pages":"Pages 105-109"},"PeriodicalIF":1.0,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143098693","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The degree sequence of the preferential attachment model
IF 1 3区 数学
Discrete Applied Mathematics Pub Date : 2024-12-12 DOI: 10.1016/j.dam.2024.11.035
Lu Yu
{"title":"The degree sequence of the preferential attachment model","authors":"Lu Yu","doi":"10.1016/j.dam.2024.11.035","DOIUrl":"10.1016/j.dam.2024.11.035","url":null,"abstract":"<div><div>For the preferential attachment model of random networks, Bollobás et al. proved that when the number <span><math><mi>n</mi></math></span> of vertices is large enough, the proportion <span><math><mrow><mi>P</mi><mrow><mo>(</mo><mi>d</mi><mo>)</mo></mrow></mrow></math></span> of vertices with degree <span><math><mi>d</mi></math></span> obeys a power law <span><math><mrow><mi>P</mi><mrow><mo>(</mo><mi>d</mi><mo>)</mo></mrow><mo>∝</mo><msup><mrow><mi>d</mi></mrow><mrow><mo>−</mo><mn>3</mn></mrow></msup></mrow></math></span> for all <span><math><mrow><mi>d</mi><mo>≤</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>1</mn><mo>/</mo><mn>15</mn></mrow></msup></mrow></math></span>. They asked that how far the result can be extended to degrees <span><math><mrow><mi>d</mi><mo>&gt;</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>1</mn><mo>/</mo><mn>15</mn></mrow></msup></mrow></math></span>. We give an answer by extending the range to all <span><math><mrow><mi>d</mi><mo>≤</mo><mi>C</mi><msup><mrow><mi>n</mi></mrow><mrow><mn>1</mn><mo>/</mo><mn>2</mn><mo>−</mo><mi>μ</mi></mrow></msup></mrow></math></span>, for any arbitrarily small constant <span><math><mrow><mi>μ</mi><mo>&gt;</mo><mn>0</mn></mrow></math></span> and arbitrarily large constant <span><math><mrow><mi>C</mi><mo>&gt;</mo><mn>0</mn></mrow></math></span>. The answer is near optimal, since the maximum degree is <span><math><mrow><mi>O</mi><mrow><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msup><mo>)</mo></mrow></mrow></math></span>.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"363 ","pages":"Pages 158-167"},"PeriodicalIF":1.0,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143098694","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The ɛ-spectral radius of trees with perfect matchings
IF 1 3区 数学
Discrete Applied Mathematics Pub Date : 2024-12-12 DOI: 10.1016/j.dam.2024.11.028
Lu Huang, Aimei Yu, Rong-Xia Hao
{"title":"The ɛ-spectral radius of trees with perfect matchings","authors":"Lu Huang,&nbsp;Aimei Yu,&nbsp;Rong-Xia Hao","doi":"10.1016/j.dam.2024.11.028","DOIUrl":"10.1016/j.dam.2024.11.028","url":null,"abstract":"<div><div>Let <span><math><mi>G</mi></math></span> be a connected graph. The eccentricity matrix of <span><math><mi>G</mi></math></span>, denoted by <span><math><mrow><mi>ɛ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>, is constructed from the distance matrix <span><math><mrow><mi>D</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> by retaining the largest distances in each row and each column, and setting the remaining entries as 0. The <span><math><mi>ɛ</mi></math></span>-spectral radius of <span><math><mi>G</mi></math></span> is the largest eigenvalue of <span><math><mrow><mi>ɛ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>. In this paper, we determine the trees having the minimum <span><math><mi>ɛ</mi></math></span>-spectral radius among <span><math><mrow><mn>2</mn><mi>n</mi></mrow></math></span>-vertex trees with perfect matchings.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"363 ","pages":"Pages 110-130"},"PeriodicalIF":1.0,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143098684","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Games restricted by simplicial complexes and an application to vertiport cooperation
IF 1 3区 数学
Discrete Applied Mathematics Pub Date : 2024-12-10 DOI: 10.1016/j.dam.2024.11.033
A. Jiménez-Losada, M. Ordóñez-Sánchez, J.C. Rodríguez-Gómez
{"title":"Games restricted by simplicial complexes and an application to vertiport cooperation","authors":"A. Jiménez-Losada,&nbsp;M. Ordóñez-Sánchez,&nbsp;J.C. Rodríguez-Gómez","doi":"10.1016/j.dam.2024.11.033","DOIUrl":"10.1016/j.dam.2024.11.033","url":null,"abstract":"<div><div>This article deals with the study of a simplicial complex and its properties as restrictive information in the context of a cooperative game. By analyzing the maximal partitions of the coalitions formed in the game, a connection between simplices and coalitions is established. This provides a clear understanding of the structure of coalitions and how they are formed. The main contribution of this paper concerns an axiomatization of a value for simplicial complexes given a game, and an application. The results obtained promise to broaden our understanding of coalition dynamics and optimal strategies in cooperative interaction situations. A new value for games restricted by a simplicial complex is proposed and also an axiomatization of this value is given. The application of the value is shown by an example where we propose a strategy to share the costs of vertiport-owning firms via a cooperative game and the simplicial complexes formed by the action areas of the vertiports.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"363 ","pages":"Pages 45-54"},"PeriodicalIF":1.0,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143098695","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Upper bounds and approximation results for the k-slow burning problem
IF 1 3区 数学
Discrete Applied Mathematics Pub Date : 2024-12-09 DOI: 10.1016/j.dam.2024.11.025
Michaela Hiller , Arie M.C.A. Koster , Philipp Pabst
{"title":"Upper bounds and approximation results for the k-slow burning problem","authors":"Michaela Hiller ,&nbsp;Arie M.C.A. Koster ,&nbsp;Philipp Pabst","doi":"10.1016/j.dam.2024.11.025","DOIUrl":"10.1016/j.dam.2024.11.025","url":null,"abstract":"<div><div><span><math><mi>k</mi></math></span>-slow burning is a model for contagion in social networks. In this model, given an undirected graph <span><math><mi>G</mi></math></span> in every time step, first every burning vertex spreads the fire to up to <span><math><mi>k</mi></math></span> of its neighbours, before second one additional source of fire is ignited. The <span><math><mi>k</mi></math></span>-slow burning number, denoted by <span><math><mrow><msub><mrow><mi>b</mi></mrow><mrow><mi>s</mi></mrow></msub><mrow><mo>(</mo><mi>k</mi><mo>,</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>, is the minimum number of time steps needed until the whole graph is burning. This model can be seen as a combination of the classic graph burning problem and the much older (<span><math><mi>k</mi></math></span>-)broadcasting problem. We prove <span><math><mi>NP</mi></math></span>-hardness of the <span><math><mi>k</mi></math></span>-slow burning problem for every fixed <span><math><mi>k</mi></math></span> on path forests, spider graphs and most notably the class of graphs of radius 1, where normal graph burning is solvable in polynomial time. Furthermore, we show that among all connected graphs on <span><math><mi>n</mi></math></span> vertices, the <span><math><mi>k</mi></math></span>-slow burning number of the star graph, <span><math><mrow><msub><mrow><mi>b</mi></mrow><mrow><mi>s</mi></mrow></msub><mrow><mo>(</mo><mi>k</mi><mo>,</mo><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>)</mo></mrow></mrow></math></span>, is maximal for <span><math><mrow><mi>k</mi><mo>∈</mo><mrow><mo>{</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>}</mo></mrow></mrow></math></span> and asymptotically maximal for fixed <span><math><mrow><mi>k</mi><mo>≥</mo><mn>3</mn></mrow></math></span>. This observation motivates a generalisation of the burning number conjecture for <span><math><mi>k</mi></math></span>-slow burning. Finally, we give a <span><math><mrow><mn>3</mn><mo>/</mo><mn>2</mn></mrow></math></span>-approximation for the <span><math><mi>k</mi></math></span>-slow burning problem on path forests and a 2-approximation on trees.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"363 ","pages":"Pages 88-104"},"PeriodicalIF":1.0,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143098697","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
List recoloring of planar graphs
IF 1 3区 数学
Discrete Applied Mathematics Pub Date : 2024-12-07 DOI: 10.1016/j.dam.2024.11.031
L. Sunil Chandran , Uttam K. Gupta , Dinabandhu Pradhan
{"title":"List recoloring of planar graphs","authors":"L. Sunil Chandran ,&nbsp;Uttam K. Gupta ,&nbsp;Dinabandhu Pradhan","doi":"10.1016/j.dam.2024.11.031","DOIUrl":"10.1016/j.dam.2024.11.031","url":null,"abstract":"&lt;div&gt;&lt;div&gt;A list assignment &lt;span&gt;&lt;math&gt;&lt;mi&gt;L&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; of a graph &lt;span&gt;&lt;math&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; is a function that assigns to every vertex &lt;span&gt;&lt;math&gt;&lt;mi&gt;v&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; of &lt;span&gt;&lt;math&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; a set &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;L&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;v&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; of colors. A proper coloring &lt;span&gt;&lt;math&gt;&lt;mi&gt;α&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; of &lt;span&gt;&lt;math&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; is called an &lt;span&gt;&lt;math&gt;&lt;mi&gt;L&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;-coloring of &lt;span&gt;&lt;math&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; if &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;α&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;v&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;mi&gt;L&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;v&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; for every &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;v&lt;/mi&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;mi&gt;V&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;. For a list assignment &lt;span&gt;&lt;math&gt;&lt;mi&gt;L&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; of &lt;span&gt;&lt;math&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;, the &lt;span&gt;&lt;math&gt;&lt;mi&gt;L&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;-recoloring graph &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;L&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; of &lt;span&gt;&lt;math&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; is a graph whose vertices correspond to the &lt;span&gt;&lt;math&gt;&lt;mi&gt;L&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;-colorings of &lt;span&gt;&lt;math&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; and two vertices of &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;L&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; are adjacent if their corresponding &lt;span&gt;&lt;math&gt;&lt;mi&gt;L&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;-colorings differ at exactly one vertex of &lt;span&gt;&lt;math&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;. A &lt;span&gt;&lt;math&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;-face (resp. &lt;span&gt;&lt;math&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt;-face) in a plane graph is a face of length (resp. at most) &lt;span&gt;&lt;math&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;. Dvořák and Feghali conjectured for a planar graph &lt;span&gt;&lt;math&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; and a list assignment &lt;span&gt;&lt;math&gt;&lt;mi&gt;L&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; of &lt;span&gt;&lt;math&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;: (i) If &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;mi&gt;L&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;v&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;≥&lt;/mo&gt;&lt;mn&gt;10&lt;/mn&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; for every &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;v&lt;/mi&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;mi&gt;V&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;, then the diameter of &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;L&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; is &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;O&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mrow&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;mi&gt;V&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;. (ii) If &lt;span&gt;&lt;math&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; is triangle-free and &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;mi&gt;L&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;v&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;≥&lt;/mo&gt;&lt;mn&gt;7&lt;/mn&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; for every &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;v&lt;/mi&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;mi&gt;V&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;, then the diameter of &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;L&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mro","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"363 ","pages":"Pages 71-87"},"PeriodicalIF":1.0,"publicationDate":"2024-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143098696","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The clique number of the exact distance t-power graph: Complexity and eigenvalue bounds
IF 1 3区 数学
Discrete Applied Mathematics Pub Date : 2024-12-06 DOI: 10.1016/j.dam.2024.11.032
Aida Abiad, Afrouz Jabal Ameli, Luuk Reijnders
{"title":"The clique number of the exact distance t-power graph: Complexity and eigenvalue bounds","authors":"Aida Abiad,&nbsp;Afrouz Jabal Ameli,&nbsp;Luuk Reijnders","doi":"10.1016/j.dam.2024.11.032","DOIUrl":"10.1016/j.dam.2024.11.032","url":null,"abstract":"<div><div>The exact distance <span><math><mi>t</mi></math></span>-power of a graph <span><math><mi>G</mi></math></span>, <span><math><msup><mrow><mi>G</mi></mrow><mrow><mrow><mo>[</mo><mi>♯</mi><mi>t</mi><mo>]</mo></mrow></mrow></msup></math></span>, is a graph which has the same vertex set as <span><math><mi>G</mi></math></span>, with two vertices adjacent in <span><math><msup><mrow><mi>G</mi></mrow><mrow><mrow><mo>[</mo><mi>♯</mi><mi>t</mi><mo>]</mo></mrow></mrow></msup></math></span> if and only if they are at distance exactly <span><math><mi>t</mi></math></span> in the original graph <span><math><mi>G</mi></math></span>. We study the clique number of this graph, also known as the <span><math><mi>t</mi></math></span>-equidistant number. We show that it is NP-hard to determine the <span><math><mi>t</mi></math></span>-equidistant number of a graph, and that in fact, it is NP-hard to approximate it within a constant factor. We also investigate how the <span><math><mi>t</mi></math></span>-equidistant number relates to another distance-based graph parameter; the <span><math><mi>t</mi></math></span>-independence number. In particular, we show how large the gap between both parameters can be. The hardness results motivate deriving eigenvalue bounds, which compare well against a known general bound. In addition, the tightness of the proposed eigenvalue bounds is studied.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"363 ","pages":"Pages 55-70"},"PeriodicalIF":1.0,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143098683","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Computing the minimal perimeter polygon for digital objects in the triangular tiling
IF 1 3区 数学
Discrete Applied Mathematics Pub Date : 2024-12-03 DOI: 10.1016/j.dam.2024.11.026
Petra Wiederhold
{"title":"Computing the minimal perimeter polygon for digital objects in the triangular tiling","authors":"Petra Wiederhold","doi":"10.1016/j.dam.2024.11.026","DOIUrl":"10.1016/j.dam.2024.11.026","url":null,"abstract":"<div><div>This work presents an algorithm, together with its correctness proof, to determine the minimum perimeter polygon (MPP) for digital objects given as regular complexes in the triangular plane tiling. Such objects are edge-adjacency-connected sets of triangle tiles that have no end tiles, and the point set union of all their tiles forms a simple polygon. Nevertheless, the boundary paths of the objects are not assumed to be simple. Then the MPP is a weakly simple polygon that coincides with the relative convex hull (i.e., geodesic hull) of a set <span><math><mi>A</mi></math></span> with respect to a simple polygon <span><math><mi>B</mi></math></span>, where <span><math><mrow><mi>A</mi><mo>⊂</mo><mi>B</mi></mrow></math></span>, but <span><math><mi>A</mi></math></span> is not necessarily a polygon, in fact it is generally not connected. Our MPP algorithm relies on constructing and iteratively constraining cones of visibility through forthcoming boundary tiles, it uses the structure of the canonical boundary path, the MPP frontier is the shortest polygonal curve following this path. We also propose a boundary tracing algorithm to obtain such paths from the objects.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"363 ","pages":"Pages 27-44"},"PeriodicalIF":1.0,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143098682","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Small matchings extend to Hamiltonian cycles in hypercubes with disjoint faulty edges
IF 1 3区 数学
Discrete Applied Mathematics Pub Date : 2024-12-02 DOI: 10.1016/j.dam.2024.11.030
Fan Wang
{"title":"Small matchings extend to Hamiltonian cycles in hypercubes with disjoint faulty edges","authors":"Fan Wang","doi":"10.1016/j.dam.2024.11.030","DOIUrl":"10.1016/j.dam.2024.11.030","url":null,"abstract":"<div><div>Fault tolerance is an important indicator for measuring network stability. Usually, we hope to ensure the normal transmission of information and data in the event of partial failures in the network, which requires the network to have a certain degree of fault tolerance. The hypercube <span><math><msub><mrow><mi>Q</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> is one of the most popular and efficient interconnection networks. We consider the question of a matching extending to a Hamiltonian cycle in <span><math><msub><mrow><mi>Q</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> with disjoint faulty edges, and obtain the following result. For <span><math><mrow><mi>n</mi><mo>≥</mo><mn>5</mn></mrow></math></span>, let <span><math><mi>M</mi></math></span> be a matching of <span><math><msub><mrow><mi>Q</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>, and <span><math><mi>F</mi></math></span> be a matching of <span><math><mrow><msub><mrow><mi>Q</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>−</mo><mi>M</mi></mrow></math></span> such that <span><math><mrow><mrow><mo>|</mo><mi>M</mi><mo>|</mo></mrow><mo>+</mo><mrow><mo>|</mo><mi>F</mi><mo>|</mo></mrow><mo>≤</mo><mn>3</mn><mi>n</mi><mo>−</mo><mn>12</mn></mrow></math></span>. Then there exists a Hamiltonian cycle containing <span><math><mi>M</mi></math></span> in <span><math><mrow><msub><mrow><mi>Q</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>−</mo><mi>F</mi></mrow></math></span>.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"363 ","pages":"Pages 16-26"},"PeriodicalIF":1.0,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143099012","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Twin-width of graphs with tree-structured decompositions
IF 1 3区 数学
Discrete Applied Mathematics Pub Date : 2024-12-02 DOI: 10.1016/j.dam.2024.11.029
Irene Heinrich, Simon Raßmann
{"title":"Twin-width of graphs with tree-structured decompositions","authors":"Irene Heinrich,&nbsp;Simon Raßmann","doi":"10.1016/j.dam.2024.11.029","DOIUrl":"10.1016/j.dam.2024.11.029","url":null,"abstract":"<div><div>The twin-width of a graph measures its distance to co-graphs and generalizes classical width concepts such as tree-width or rank-width. Since its introduction in 2020 (Bonnet et al., 2022), a mass of new results has appeared relating twin-width to group theory, model theory, combinatorial optimization, and structural graph theory.</div><div>We take a detailed look at the interplay between the twin-width of a graph and the twin-width of its components under tree-structured decompositions: We prove that the twin-width of a graph of strong tree-width <span><math><mi>k</mi></math></span> is at most <span><math><mrow><mfrac><mrow><mn>3</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mi>k</mi><mo>+</mo><mi>o</mi><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow></mrow></math></span>, contrasting nicely with the result of Bonnet and Déprés (2023), which states that twin-width can be exponential in tree-width. Further, we employ the fundamental concept from structural graph theory of decomposing a graph into highly connected components, in order to obtain optimal linear bounds on the twin-width of a graph given the widths of its biconnected components. For triconnected components we obtain a linear upper bound if we add red edges to the components indicating the splits which led to the components. Extending this approach to quasi-4-connectivity, we obtain a quadratic upper bound. Finally, we investigate how the adhesion of a tree decomposition influences the twin-width of the decomposed graph.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"363 ","pages":"Pages 1-15"},"PeriodicalIF":1.0,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143098685","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信