{"title":"Generalized competitively orientable complete multipartite graphs","authors":"Myungho Choi","doi":"10.1016/j.dam.2025.03.031","DOIUrl":"10.1016/j.dam.2025.03.031","url":null,"abstract":"<div><div>We say that a digraph <span><math><mi>D</mi></math></span> is <span><math><mrow><mo>(</mo><mi>i</mi><mo>,</mo><mi>j</mi><mo>)</mo></mrow></math></span>-step competitive if any two vertices have an <span><math><mrow><mo>(</mo><mi>i</mi><mo>,</mo><mi>j</mi><mo>)</mo></mrow></math></span>-step common out-neighbor in <span><math><mi>D</mi></math></span> and that a graph <span><math><mi>G</mi></math></span> is <span><math><mrow><mo>(</mo><mi>i</mi><mo>,</mo><mi>j</mi><mo>)</mo></mrow></math></span>-step competitively orientable if there exists an <span><math><mrow><mo>(</mo><mi>i</mi><mo>,</mo><mi>j</mi><mo>)</mo></mrow></math></span>-step competitive orientation of <span><math><mi>G</mi></math></span>.</div><div>In Choi et al. (2022), Choi et al. introduce the notion of the competitive digraph and completely characterize competitively orientable complete multipartite graphs in terms of the sizes of its partite sets. Here, a competitive digraph means a <span><math><mrow><mo>(</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo>)</mo></mrow></math></span>-step competitive digraph. In this paper, the result of Choi et al. has been extended to a general characterization of <span><math><mrow><mo>(</mo><mi>i</mi><mo>,</mo><mi>j</mi><mo>)</mo></mrow></math></span>-step competitively orientable complete multipartite graphs.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"371 ","pages":"Pages 65-72"},"PeriodicalIF":1.0,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143715404","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
David Ashok Kalarkop , Michael A. Henning , Ismail Sahul Hamid , Pawaton Kaemawichanurat
{"title":"On irredundance coloring and irredundance compelling coloring of graphs","authors":"David Ashok Kalarkop , Michael A. Henning , Ismail Sahul Hamid , Pawaton Kaemawichanurat","doi":"10.1016/j.dam.2025.03.025","DOIUrl":"10.1016/j.dam.2025.03.025","url":null,"abstract":"<div><div>An irredundance coloring of a graph <span><math><mi>G</mi></math></span> is a proper coloring admitting a maximal irredundant set all of whose vertices receive different colors. The minimum number of colors required for an irredundance coloring of <span><math><mi>G</mi></math></span> is called the <em>irredundance chromatic number</em> of <span><math><mi>G</mi></math></span>, and is denoted by <span><math><mrow><msub><mrow><mi>χ</mi></mrow><mrow><mi>i</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>. An irredundance compelling coloring of <span><math><mi>G</mi></math></span> is a proper coloring of <span><math><mi>G</mi></math></span> in which every rainbow committee (a set consisting of one vertex of each color) is an irredundant set of <span><math><mi>G</mi></math></span>. The maximum number of colors required for an irredundance compelling coloring of <span><math><mi>G</mi></math></span> is called the <em>irredundance compelling chromatic number</em> of <span><math><mi>G</mi></math></span>, and is denoted by <span><math><mrow><msub><mrow><mi>χ</mi></mrow><mrow><mi>i</mi><mi>r</mi><mi>c</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>. We make a detailed study of <span><math><mrow><msub><mrow><mi>χ</mi></mrow><mrow><mi>i</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>, <span><math><mrow><msub><mrow><mi>χ</mi></mrow><mrow><mi>i</mi><mi>r</mi><mi>c</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>, derive bounds on these parameters and characterize extremal graphs attaining the bounds.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"369 ","pages":"Pages 149-161"},"PeriodicalIF":1.0,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143715628","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Anand Brahmbhatt , Kartikeya Rai , Amitabha Tripathi
{"title":"Measures of closeness to cordiality for graphs","authors":"Anand Brahmbhatt , Kartikeya Rai , Amitabha Tripathi","doi":"10.1016/j.dam.2025.03.012","DOIUrl":"10.1016/j.dam.2025.03.012","url":null,"abstract":"<div><div>A graph <span><math><mi>G</mi></math></span> is cordial if there exists a function <span><math><mi>f</mi></math></span> from the vertices of <span><math><mi>G</mi></math></span> to <span><math><mrow><mo>{</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>}</mo></mrow></math></span> such that the number of vertices labelled 0 and the number of vertices labelled 1 differ by at most 1, and if we assign to each edge <span><math><mrow><mi>x</mi><mi>y</mi></mrow></math></span> the label <span><math><mrow><mo>|</mo><mi>f</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>−</mo><mi>f</mi><mrow><mo>(</mo><mi>y</mi><mo>)</mo></mrow><mo>|</mo></mrow></math></span>, the number of edges labelled 0 and the number of edges labelled 1 also differ at most by 1. We introduce two measures of how close a graph is to being cordial, and compute these measures for a variety of classes of graphs.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"370 ","pages":"Pages 157-166"},"PeriodicalIF":1.0,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143715551","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Some new bounds for the energy of graphs","authors":"Jiuying Dong, Yingying Yao","doi":"10.1016/j.dam.2025.03.022","DOIUrl":"10.1016/j.dam.2025.03.022","url":null,"abstract":"<div><div>Let <span><math><mi>G</mi></math></span> be a graph with <span><math><mi>n</mi></math></span> vertices and <span><math><mi>m</mi></math></span> edges. The energy of a graph <span><math><mi>G</mi></math></span> is defined as the sum of absolute values of the eigenvalues about its adjacency matrix, i.e. <span><math><mrow><mi>ɛ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>=</mo><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>n</mi></mrow></msubsup><mrow><mo>|</mo><msub><mrow><mi>λ</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>|</mo></mrow></mrow></math></span>. In this paper, we derive some new upper bounds on the graph energy based on a new formula and some inequalities for calculating the graph energy, and characterize the extremal graphs. In addition, we propose some new lower bounds for the graph energy involving order <span><math><mi>n</mi></math></span>, the size <span><math><mi>m</mi></math></span>, the eigenvalue with maximum absolute value <span><math><msub><mrow><mi>λ</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> and the eigenvalue with minimum absolute value <span><math><msub><mrow><mi>λ</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> of the graph <span><math><mi>G</mi></math></span>, and characterize the extremal graphs.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"371 ","pages":"Pages 73-79"},"PeriodicalIF":1.0,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143715514","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Preprocessing complexity for some graph problems parameterized by structural parameters","authors":"Manuel Lafond, Weidong Luo","doi":"10.1016/j.dam.2025.03.023","DOIUrl":"10.1016/j.dam.2025.03.023","url":null,"abstract":"<div><div>Structural graph parameters play an important role in parameterized complexity, including in kernelization. Notably, vertex cover, neighborhood diversity, twin-cover, and modular-width have been studied extensively in the last few years. However, there are many fundamental problems whose preprocessing complexity is not fully understood under these parameters. Indeed, the existence of polynomial kernels or polynomial Turing kernels for famous problems such as <span>Clique</span>, <span>Chromatic Number</span>, and <span>Steiner Tree</span> has only been established for a subset of structural parameters. In this work, we use several techniques to obtain a complete preprocessing complexity landscape for over a dozen of fundamental algorithmic problems.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"371 ","pages":"Pages 46-59"},"PeriodicalIF":1.0,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143696945","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Bounds on the Aα-spectral radius of uniform hypergraphs with some vertices deleted","authors":"Peng-Li Zhang , Xiao-Dong Zhang","doi":"10.1016/j.dam.2025.03.020","DOIUrl":"10.1016/j.dam.2025.03.020","url":null,"abstract":"<div><div>Let <span><math><mrow><mi>D</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><mi>A</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> be the diagonal and adjacency tensors of a <span><math><mi>k</mi></math></span>-uniform hypergraph <span><math><mrow><mi>G</mi><mo>,</mo></mrow></math></span> respectively. The <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>α</mi></mrow></msub></math></span>-spectral radius of <span><math><mi>G</mi></math></span> is defined as the spectral radius of the tensor <span><math><mrow><msub><mrow><mi>A</mi></mrow><mrow><mi>α</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>=</mo><mi>α</mi><mi>D</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>+</mo><mrow><mo>(</mo><mn>1</mn><mo>−</mo><mi>α</mi><mo>)</mo></mrow><mi>A</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>,</mo></mrow></math></span> where <span><math><mrow><mn>0</mn><mo>≤</mo><mi>α</mi><mo><</mo><mn>1</mn><mo>.</mo></mrow></math></span> In this paper, we obtain an interlacing inequality on the spectral radius of a principal subtensor for a nonnegative weakly irreducible symmetric tensor, which is used to present several sharp lower bounds for the <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>α</mi></mrow></msub></math></span>-spectral radius of any subhypergraph <span><math><mrow><mi>G</mi><mo>−</mo><mi>S</mi></mrow></math></span> of a connected <span><math><mi>k</mi></math></span>-uniform hypergraph <span><math><mi>G</mi></math></span> in terms of the principal eigenvector associated with the <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>α</mi></mrow></msub></math></span>-spectral radius of <span><math><mi>G</mi></math></span>, degrees and co-degrees, where <span><math><mi>S</mi></math></span> is a subset of <span><math><mrow><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>. They extend and strengthen some known results.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"371 ","pages":"Pages 1-16"},"PeriodicalIF":1.0,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143696939","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On disjunction convex hulls by big-M lifting","authors":"Yushan Qu, Jon Lee","doi":"10.1016/j.dam.2025.03.013","DOIUrl":"10.1016/j.dam.2025.03.013","url":null,"abstract":"<div><div>We study the natural extended-variable formulation for the disjunction of <span><math><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></math></span> polytopes in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span>. We demonstrate that the convex hull <span><math><mi>D</mi></math></span> in the natural extended-variable space <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi><mo>+</mo><mi>n</mi></mrow></msup></math></span> is given by full optimal big-M lifting (i) when <span><math><mrow><mi>d</mi><mo>≤</mo><mn>2</mn></mrow></math></span> (and that it is not generally true for <span><math><mrow><mi>d</mi><mo>≥</mo><mn>3</mn></mrow></math></span>), and also (ii) under some technical conditions, when the polytopes have a common facet-describing constraint matrix, for arbitrary <span><math><mrow><mi>d</mi><mo>≥</mo><mn>1</mn></mrow></math></span> and <span><math><mrow><mi>n</mi><mo>≥</mo><mn>1</mn></mrow></math></span>. We give a broad family of examples with <span><math><mrow><mi>d</mi><mo>≥</mo><mn>3</mn></mrow></math></span> and <span><math><mrow><mi>n</mi><mo>=</mo><mn>1</mn></mrow></math></span>, where the convex hull is not described after employing all full optimal big-M lifting inequalities, but it is described after one round of MIR inequalities. Additionally, we give some general results on the polyhedral structure of <span><math><mi>D</mi></math></span>, and we demonstrate that all facets of <span><math><mi>D</mi></math></span> can be enumerated in polynomial time when <span><math><mi>d</mi></math></span> is fixed.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"371 ","pages":"Pages 31-45"},"PeriodicalIF":1.0,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143683253","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Grundy packing coloring of graphs","authors":"Didem Gözüpek , Iztok Peterin","doi":"10.1016/j.dam.2025.03.024","DOIUrl":"10.1016/j.dam.2025.03.024","url":null,"abstract":"<div><div>A map <span><math><mrow><mi>c</mi><mo>:</mo><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>→</mo><mrow><mo>{</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>k</mi><mo>}</mo></mrow></mrow></math></span> of a graph <span><math><mi>G</mi></math></span> is a packing <span><math><mi>k</mi></math></span>-coloring if every two different vertices of the same color <span><math><mrow><mi>i</mi><mo>∈</mo><mrow><mo>{</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>k</mi><mo>}</mo></mrow></mrow></math></span> are at distance more than <span><math><mi>i</mi></math></span>. The packing chromatic number <span><math><mrow><msub><mrow><mi>χ</mi></mrow><mrow><mi>ρ</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> of <span><math><mi>G</mi></math></span> is the smallest integer <span><math><mi>k</mi></math></span> such that there exists a packing <span><math><mi>k</mi></math></span>-coloring. In this paper we introduce the notion of <em>Grundy packing chromatic number</em>, analogous to the Grundy chromatic number of a graph. We first present a polynomial-time algorithm that is based on a greedy approach and gives a packing coloring of any graph <span><math><mi>G</mi></math></span>. We then define the Grundy packing chromatic number <span><math><mrow><msub><mrow><mi>Γ</mi></mrow><mrow><mi>ρ</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> of a graph <span><math><mi>G</mi></math></span> as the maximum value that this algorithm yields in <span><math><mi>G</mi></math></span>. We present several properties of <span><math><mrow><msub><mrow><mi>Γ</mi></mrow><mrow><mi>ρ</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>, provide results on the complexity of the problem as well as bounds and some exact results for <span><math><mrow><msub><mrow><mi>Γ</mi></mrow><mrow><mi>ρ</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"371 ","pages":"Pages 17-30"},"PeriodicalIF":1.0,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143683268","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Pareto-scheduling of two competing agents with total weighted tardiness being one criterion","authors":"Jinwen Sun , Rubing Chen , Qiulan Zhao","doi":"10.1016/j.dam.2025.03.026","DOIUrl":"10.1016/j.dam.2025.03.026","url":null,"abstract":"<div><div>We study the Pareto-scheduling of two competing agents on a single machine, in which the jobs of at least one agent have their own equal processing times. When the criterion of one agent is the total weighted tardiness and the criterion of the other agent is the total completion time, the total tardiness or the total weighted completion time, the exact complexities of these problems remain open as posed by Chen et al. (2022). In this paper, we design a unified algorithm for solving these problems. As consequences, we show that these problems are solvable either in polynomial time or in pseudo-polynomial time. Combining the known results in the literature, we determine the complexity classification of nine problems.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"369 ","pages":"Pages 137-148"},"PeriodicalIF":1.0,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143681869","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The planar Turán number of double stars S2,l","authors":"Xin Xu , Jiawei Shao , Qiang Zhou","doi":"10.1016/j.dam.2025.03.016","DOIUrl":"10.1016/j.dam.2025.03.016","url":null,"abstract":"<div><div>The planar Turán number <span><math><mrow><msub><mrow><mi>ex</mi></mrow><mrow><mi>P</mi></mrow></msub><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>H</mi><mo>)</mo></mrow></mrow></math></span> of <span><math><mi>H</mi></math></span> is the maximum number of edges in an <span><math><mi>H</mi></math></span>-free planar graph on <span><math><mi>n</mi></math></span> vertices. The double star <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>k</mi><mo>,</mo><mi>l</mi></mrow></msub></math></span> is obtained from joining the centers of two stars each having <span><math><mi>k</mi></math></span> leaves and <span><math><mi>l</mi></math></span> leaves, respectively. In this paper, we give the exact value of <span><math><mrow><msub><mrow><mi>ex</mi></mrow><mrow><mi>P</mi></mrow></msub><mrow><mo>(</mo><mi>n</mi><mo>,</mo><msub><mrow><mi>S</mi></mrow><mrow><mn>2</mn><mo>,</mo><mn>5</mn></mrow></msub><mo>)</mo></mrow></mrow></math></span>, which determines the planar Turán number for all double stars <span><math><msub><mrow><mi>S</mi></mrow><mrow><mn>2</mn><mo>,</mo><mi>l</mi></mrow></msub></math></span> when <span><math><mrow><mi>l</mi><mo>≥</mo><mn>2</mn></mrow></math></span>.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"369 ","pages":"Pages 131-136"},"PeriodicalIF":1.0,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143681914","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}