Discrete Applied Mathematics最新文献

筛选
英文 中文
The number of spanning trees in Km,n-complements of bipartite graphs
IF 1 3区 数学
Discrete Applied Mathematics Pub Date : 2025-02-07 DOI: 10.1016/j.dam.2025.01.039
Helin Gong , Xiurong Yan , Anshui Li
{"title":"The number of spanning trees in Km,n-complements of bipartite graphs","authors":"Helin Gong ,&nbsp;Xiurong Yan ,&nbsp;Anshui Li","doi":"10.1016/j.dam.2025.01.039","DOIUrl":"10.1016/j.dam.2025.01.039","url":null,"abstract":"<div><div>For a subgraph <span><math><mi>G</mi></math></span> in the complete bipartite graph <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>m</mi><mo>,</mo><mi>n</mi></mrow></msub></math></span>, the <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>m</mi><mo>,</mo><mi>n</mi></mrow></msub></math></span>-complement of <span><math><mi>G</mi></math></span> (namely <span><math><mrow><msub><mrow><mi>K</mi></mrow><mrow><mi>m</mi><mo>,</mo><mi>n</mi></mrow></msub><mo>−</mo><mi>G</mi></mrow></math></span>) is the graph obtained from <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>m</mi><mo>,</mo><mi>n</mi></mrow></msub></math></span> by removing the edges of <span><math><mi>G</mi></math></span>. In this paper, by the matrix-tree theorem, we derive a general expression for the number of spanning trees of <span><math><mrow><msub><mrow><mi>K</mi></mrow><mrow><mi>m</mi><mo>,</mo><mi>n</mi></mrow></msub><mo>−</mo><mi>G</mi></mrow></math></span> and establish explicit formulas for the number of spanning trees of the <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>m</mi><mo>,</mo><mi>n</mi></mrow></msub></math></span>-complements of various classes of bipartite graphs, which generalizes some known results.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"367 ","pages":"Pages 40-52"},"PeriodicalIF":1.0,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143349903","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Total list weighting of Cartesian product of graphs
IF 1 3区 数学
Discrete Applied Mathematics Pub Date : 2025-02-06 DOI: 10.1016/j.dam.2025.01.043
Yunfang Tang , Yuting Yao
{"title":"Total list weighting of Cartesian product of graphs","authors":"Yunfang Tang ,&nbsp;Yuting Yao","doi":"10.1016/j.dam.2025.01.043","DOIUrl":"10.1016/j.dam.2025.01.043","url":null,"abstract":"<div><div>A proper total weighting of a graph <span><math><mi>G</mi></math></span> is a mapping <span><math><mi>ϕ</mi></math></span> that assigns a real number as the weight to each vertex and each edge of <span><math><mi>G</mi></math></span> so that for any two adjacent vertices <span><math><mi>u</mi></math></span> and <span><math><mi>v</mi></math></span>, <span><math><mrow><msub><mrow><mo>∑</mo></mrow><mrow><mi>e</mi><mo>∈</mo><mi>E</mi><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow></mrow></msub><mi>ϕ</mi><mrow><mo>(</mo><mi>e</mi><mo>)</mo></mrow><mo>+</mo><mi>ϕ</mi><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow><mo>≠</mo><msub><mrow><mo>∑</mo></mrow><mrow><mi>e</mi><mo>∈</mo><mi>E</mi><mrow><mo>(</mo><mi>v</mi><mo>)</mo></mrow></mrow></msub><mi>ϕ</mi><mrow><mo>(</mo><mi>e</mi><mo>)</mo></mrow><mo>+</mo><mi>ϕ</mi><mrow><mo>(</mo><mi>v</mi><mo>)</mo></mrow></mrow></math></span>. A graph <span><math><mrow><mi>G</mi><mo>=</mo><mrow><mo>(</mo><mi>V</mi><mo>,</mo><mi>E</mi><mo>)</mo></mrow></mrow></math></span> is called <span><math><mrow><mo>(</mo><mi>k</mi><mo>,</mo><msup><mrow><mi>k</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>)</mo></mrow></math></span>-choosable if the following is true: If each vertex <span><math><mi>v</mi></math></span> is assigned a set <span><math><mrow><mi>L</mi><mrow><mo>(</mo><mi>v</mi><mo>)</mo></mrow></mrow></math></span> of <span><math><mi>k</mi></math></span> real numbers, and each edge <span><math><mi>e</mi></math></span> is assigned a set <span><math><mrow><mi>L</mi><mrow><mo>(</mo><mi>e</mi><mo>)</mo></mrow></mrow></math></span> of <span><math><msup><mrow><mi>k</mi></mrow><mrow><mo>′</mo></mrow></msup></math></span> real numbers, then there is a proper total weighting <span><math><mi>ϕ</mi></math></span> with <span><math><mrow><mi>ϕ</mi><mrow><mo>(</mo><mi>z</mi><mo>)</mo></mrow><mo>∈</mo><mi>L</mi><mrow><mo>(</mo><mi>z</mi><mo>)</mo></mrow></mrow></math></span> for any <span><math><mrow><mi>z</mi><mo>∈</mo><mi>V</mi><mo>∪</mo><mi>E</mi></mrow></math></span>. In this paper, we prove that if <span><math><mi>G</mi></math></span> is the Cartesian product of a path and a cycle or the Cartesian product of two cycles, then <span><math><mi>G</mi></math></span> is <span><math><mrow><mo>(</mo><mn>1</mn><mo>,</mo><mn>3</mn><mo>)</mo></mrow></math></span>-choosable and <span><math><mrow><mo>(</mo><mn>2</mn><mo>,</mo><mn>2</mn><mo>)</mo></mrow></math></span>-choosable. This improves and extends the known results which were proved by Wong et al. in 2012.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"367 ","pages":"Pages 30-39"},"PeriodicalIF":1.0,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143225982","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Solving the problem about the second largest normalized Laplacian eigenvalue
IF 1 3区 数学
Discrete Applied Mathematics Pub Date : 2025-02-05 DOI: 10.1016/j.dam.2025.01.041
Xinghui Zhao, Lihua You
{"title":"Solving the problem about the second largest normalized Laplacian eigenvalue","authors":"Xinghui Zhao,&nbsp;Lihua You","doi":"10.1016/j.dam.2025.01.041","DOIUrl":"10.1016/j.dam.2025.01.041","url":null,"abstract":"<div><div>Let <span><math><mi>G</mi></math></span> be a simple graph of order <span><math><mi>n</mi></math></span> with normalized Laplacian eigenvalue <span><math><mrow><msub><mrow><mi>ρ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>≥</mo><msub><mrow><mi>ρ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>≥</mo><mo>⋯</mo><mo>≥</mo><msub><mrow><mi>ρ</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>=</mo><mn>0</mn></mrow></math></span>. In Sun and Das (2019), the authors obtained the first three smallest values on <span><math><msub><mrow><mi>ρ</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> of connected graphs and proposed an open problem on the third smallest values of <span><math><msub><mrow><mi>ρ</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>. In this paper, we solve the problem completely, characterize all connected graphs with order <span><math><mi>n</mi></math></span>, which satisfy <span><math><mrow><msub><mrow><mi>ρ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>=</mo><mfrac><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow><mrow><mi>n</mi><mo>−</mo><mn>2</mn></mrow></mfrac></mrow></math></span>.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"367 ","pages":"Pages 8-21"},"PeriodicalIF":1.0,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143168315","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The phase transitions of diameters in random axis-parallel hyperrectangle intersection graphs
IF 1 3区 数学
Discrete Applied Mathematics Pub Date : 2025-02-05 DOI: 10.1016/j.dam.2025.01.044
Congsong Zhang , Yong Gao , James Nastos
{"title":"The phase transitions of diameters in random axis-parallel hyperrectangle intersection graphs","authors":"Congsong Zhang ,&nbsp;Yong Gao ,&nbsp;James Nastos","doi":"10.1016/j.dam.2025.01.044","DOIUrl":"10.1016/j.dam.2025.01.044","url":null,"abstract":"&lt;div&gt;&lt;div&gt;We study the behaviours of diameters in two models of random axis-parallel hyperrectangle intersection graphs: &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;l&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; and &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;l&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;. These two models use axis-parallel &lt;span&gt;&lt;math&gt;&lt;mi&gt;l&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;-dimensional hyperrectangles to represent vertices, and vertices are adjacent if and only if their corresponding axis-parallel hyperrectangles intersect. In the model &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;l&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;, we distribute &lt;span&gt;&lt;math&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; points within &lt;span&gt;&lt;math&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mo&gt;[&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;]&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;l&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt; uniformly and independently, and each point is the centre of an axis-parallel &lt;span&gt;&lt;math&gt;&lt;mi&gt;l&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;-dimensional hypercube with edge length &lt;span&gt;&lt;math&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;. The model &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;l&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;, distributing the centres of &lt;span&gt;&lt;math&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; axis-parallel &lt;span&gt;&lt;math&gt;&lt;mi&gt;l&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;-dimensional hyperrectangles within &lt;span&gt;&lt;math&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mo&gt;[&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;]&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;l&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt; exactly as the model &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;l&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;, assigns a length from a uniform distribution over &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mo&gt;[&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;mo&gt;]&lt;/mo&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; to each edge of the &lt;span&gt;&lt;math&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; axis-parallel &lt;span&gt;&lt;math&gt;&lt;mi&gt;l&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;-dimensional hyperrectangles.&lt;/div&gt;&lt;div&gt;We prove that in the model &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;l&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;, there is a phase transition for the event that the diameter is at most &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; occurring at &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; if &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mi&gt;⋅&lt;/mi&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mi&gt;l&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;≥&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;ϵ&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;\u0000 where &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;&lt;&lt;/mo&gt;&lt;mi&gt;ϵ&lt;/mi&gt;&lt;","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"367 ","pages":"Pages 22-29"},"PeriodicalIF":1.0,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143225980","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bounds for boxicity of circular clique graphs and zero-divisor graphs
IF 1 3区 数学
Discrete Applied Mathematics Pub Date : 2025-02-05 DOI: 10.1016/j.dam.2025.01.038
T. Kavaskar
{"title":"Bounds for boxicity of circular clique graphs and zero-divisor graphs","authors":"T. Kavaskar","doi":"10.1016/j.dam.2025.01.038","DOIUrl":"10.1016/j.dam.2025.01.038","url":null,"abstract":"&lt;div&gt;&lt;div&gt;Let &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;b&lt;/mi&gt;&lt;mi&gt;o&lt;/mi&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; be the boxicity of a graph &lt;span&gt;&lt;math&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;, &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;[&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mo&gt;…&lt;/mo&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;]&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; be the &lt;span&gt;&lt;math&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;-join graph of &lt;span&gt;&lt;math&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;-pairwise disjoint graphs &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mo&gt;…&lt;/mo&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;, &lt;span&gt;&lt;math&gt;&lt;msubsup&gt;&lt;mrow&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;/math&gt;&lt;/span&gt; be a circular clique graph (where &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;mo&gt;≥&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;) and &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;Γ&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;R&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; be the zero-divisor graph of a commutative ring &lt;span&gt;&lt;math&gt;&lt;mi&gt;R&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; with unity. In this paper, we prove that &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;χ&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msubsup&gt;&lt;mrow&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;≥&lt;/mo&gt;&lt;mi&gt;b&lt;/mi&gt;&lt;mi&gt;o&lt;/mi&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msubsup&gt;&lt;mrow&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;, for all &lt;span&gt;&lt;math&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; and &lt;span&gt;&lt;math&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; with &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;mo&gt;≥&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;. This generalizes the results proved by Kamibeppu (2018). Also we obtain that &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;b&lt;/mi&gt;&lt;mi&gt;o&lt;/mi&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;[&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mo&gt;…&lt;/mo&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;]&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;≤&lt;/mo&gt;&lt;msubsup&gt;&lt;mrow&gt;&lt;mo&gt;∑&lt;/mo&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;mi&gt;b&lt;/mi&gt;&lt;mi&gt;o&lt;/mi&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;. As a consequence of this result, we obtain a bound for boxicity of ideal-based zero-divisor graph of a finite commutative ring with unity. In particular, if &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;R&lt;/mi&gt;&lt;mo&gt;≇&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;Z&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;×&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;F&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;q&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; is a finite commutative non-zero reduced ring with unity, where &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;F&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;q&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/sp","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"365 ","pages":"Pages 260-269"},"PeriodicalIF":1.0,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143150139","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Near optimal colourability on (H, Kn−e)-free graphs
IF 1 3区 数学
Discrete Applied Mathematics Pub Date : 2025-02-04 DOI: 10.1016/j.dam.2025.01.042
Yiao Ju , Shenwei Huang
{"title":"Near optimal colourability on (H, Kn−e)-free graphs","authors":"Yiao Ju ,&nbsp;Shenwei Huang","doi":"10.1016/j.dam.2025.01.042","DOIUrl":"10.1016/j.dam.2025.01.042","url":null,"abstract":"&lt;div&gt;&lt;div&gt;A graph family &lt;span&gt;&lt;math&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; is &lt;em&gt;near optimal colourable&lt;/em&gt; if there is a constant number &lt;span&gt;&lt;math&gt;&lt;mi&gt;c&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;, such that every graph &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; satisfies &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;χ&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;≤&lt;/mo&gt;&lt;mo&gt;max&lt;/mo&gt;&lt;mrow&gt;&lt;mo&gt;{&lt;/mo&gt;&lt;mi&gt;c&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;ω&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;}&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;, where &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;χ&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; and &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;ω&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; are the chromatic number and clique number of &lt;span&gt;&lt;math&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;, respectively. One may reduce the colouring problem on a near optimal colourable graph family to &lt;span&gt;&lt;math&gt;&lt;mi&gt;q&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;-colouring problems for &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;q&lt;/mi&gt;&lt;mo&gt;≤&lt;/mo&gt;&lt;mi&gt;c&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;. In our previous paper [Y. Ju and S. Huang. Near optimal colourability on hereditary graph families. Theoretical Computer Science 994: 114465, 2024], we give an almost complete characterization for the near optimal colourability for (&lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;)-free graphs and give the open problem: “Decide whether the family of (&lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;)-free graphs is near optimal colourable, when &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; is a forest with independence number at least 3 and &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;K&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mi&gt;e&lt;/mi&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;\u0000 (&lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;≥&lt;/mo&gt;&lt;mn&gt;4&lt;/mn&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;).” In this paper, we partially solve this open problem. We prove that for every &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;≥&lt;/mo&gt;&lt;mn&gt;4&lt;/mn&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;, the family of (&lt;span&gt;&lt;math&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;, &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;K&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mi&gt;e&lt;/mi&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;)-free graphs is near optimal colourable if &lt;span&gt;&lt;math&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; is an induced subgraph of &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;P&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;5&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt;, &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;P&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;3&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;P&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; or &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;P&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;P&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; for any &lt;span&gt;&lt;math&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;/ma","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"367 ","pages":"Pages 1-7"},"PeriodicalIF":1.0,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143168316","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Counting r×s rectangles in (Catalan) words
IF 1 3区 数学
Discrete Applied Mathematics Pub Date : 2025-02-03 DOI: 10.1016/j.dam.2025.01.031
Sela Fried , Toufik Mansour
{"title":"Counting r×s rectangles in (Catalan) words","authors":"Sela Fried ,&nbsp;Toufik Mansour","doi":"10.1016/j.dam.2025.01.031","DOIUrl":"10.1016/j.dam.2025.01.031","url":null,"abstract":"<div><div>Generalizing previous results, we introduce and study a new statistic on words, that we call rectangle capacity. For two fixed positive integers <span><math><mi>r</mi></math></span> and <span><math><mi>s</mi></math></span>, this statistic counts the number of occurrences of a rectangle of size <span><math><mrow><mi>r</mi><mo>×</mo><mi>s</mi></mrow></math></span> in the bargraph representation of a word. We find the bivariate generating function for the distribution on words of the number of <span><math><mrow><mi>r</mi><mo>×</mo><mi>s</mi></mrow></math></span> rectangles and the generating function for their total number over all words. We also obtain the analog results for Catalan words.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"365 ","pages":"Pages 247-259"},"PeriodicalIF":1.0,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143150625","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
VC-dimension and pseudo-random graphs
IF 1 3区 数学
Discrete Applied Mathematics Pub Date : 2025-02-03 DOI: 10.1016/j.dam.2025.01.030
Thang Pham , Steven Senger , Michael Tait , Nguyen Thu-Huyen
{"title":"VC-dimension and pseudo-random graphs","authors":"Thang Pham ,&nbsp;Steven Senger ,&nbsp;Michael Tait ,&nbsp;Nguyen Thu-Huyen","doi":"10.1016/j.dam.2025.01.030","DOIUrl":"10.1016/j.dam.2025.01.030","url":null,"abstract":"<div><div>Let <span><math><mi>G</mi></math></span> be a graph and <span><math><mrow><mi>U</mi><mo>⊂</mo><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> be a set of vertices. For each <span><math><mrow><mi>v</mi><mo>∈</mo><mi>U</mi></mrow></math></span>, let <span><math><mrow><msub><mrow><mi>h</mi></mrow><mrow><mi>v</mi></mrow></msub><mo>:</mo><mi>U</mi><mo>→</mo><mrow><mo>{</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>}</mo></mrow></mrow></math></span> be the function defined by <span><span><span><math><mrow><msub><mrow><mi>h</mi></mrow><mrow><mi>v</mi></mrow></msub><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow><mo>=</mo><mfenced><mrow><mtable><mtr><mtd><mi>&amp;</mi><mn>1</mn><mspace></mspace><mtext>if</mtext><mspace></mspace><mi>u</mi><mo>∼</mo><mi>v</mi><mo>,</mo><mi>u</mi><mo>∈</mo><mi>U</mi><mspace></mspace></mtd></mtr><mtr><mtd><mn>0</mn><mspace></mspace><mtext>if</mtext><mspace></mspace><mi>u</mi><mo>⁄</mo><mo>∼</mo><mi>v</mi><mo>,</mo><mi>u</mi><mo>∈</mo><mi>U</mi><mo>,</mo><mspace></mspace></mtd></mtr></mtable></mrow></mfenced></mrow></math></span></span></span>and set <span><math><mrow><mi>H</mi><mrow><mo>(</mo><mi>U</mi><mo>)</mo></mrow><mo>≔</mo><mrow><mo>{</mo><msub><mrow><mi>h</mi></mrow><mrow><mi>v</mi></mrow></msub><mo>:</mo><mi>v</mi><mo>∈</mo><mi>U</mi><mo>}</mo></mrow></mrow></math></span>. The first purpose of this paper is to study the following question: What families of graphs <span><math><mi>G</mi></math></span> and what conditions on <span><math><mi>U</mi></math></span> do we need so that the VC-dimension of <span><math><mrow><mi>H</mi><mrow><mo>(</mo><mi>U</mi><mo>)</mo></mrow></mrow></math></span> can be determined? We show that if <span><math><mi>G</mi></math></span> is a pseudo-random graph, then under some mild conditions, the VC dimension of <span><math><mrow><mi>H</mi><mrow><mo>(</mo><mi>U</mi><mo>)</mo></mrow></mrow></math></span> can be bounded from below. Specific cases of this theorem recover and improve previous results on VC-dimension of functions defined by the well-studied distance and dot-product graphs over a finite field.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"365 ","pages":"Pages 231-246"},"PeriodicalIF":1.0,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143150700","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the edge-connectivity of the square of a graph
IF 1 3区 数学
Discrete Applied Mathematics Pub Date : 2025-01-31 DOI: 10.1016/j.dam.2025.01.029
Camino Balbuena , Peter Dankelmann
{"title":"On the edge-connectivity of the square of a graph","authors":"Camino Balbuena ,&nbsp;Peter Dankelmann","doi":"10.1016/j.dam.2025.01.029","DOIUrl":"10.1016/j.dam.2025.01.029","url":null,"abstract":"&lt;div&gt;&lt;div&gt;Let &lt;span&gt;&lt;math&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; be a connected graph. The edge-connectivity of &lt;span&gt;&lt;math&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;, denoted by &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;λ&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;, is the minimum number of edges whose removal renders &lt;span&gt;&lt;math&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; disconnected. Let &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;δ&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; be the minimum degree of &lt;span&gt;&lt;math&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;. It is well-known that &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;λ&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;≤&lt;/mo&gt;&lt;mi&gt;δ&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;, and graphs for which equality holds are said to be maximally edge-connected. The square &lt;span&gt;&lt;math&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt; of &lt;span&gt;&lt;math&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; is the graph with the same vertex set as &lt;span&gt;&lt;math&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;, in which two vertices are adjacent if their distance is not more that 2.&lt;/div&gt;&lt;div&gt;In this paper we present results on the edge-connectivity of the square of a graph. We show that if the minimum degree of a connected graph &lt;span&gt;&lt;math&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; of order &lt;span&gt;&lt;math&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; is at least &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mo&gt;⌊&lt;/mo&gt;&lt;mfrac&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;4&lt;/mn&gt;&lt;/mrow&gt;&lt;/mfrac&gt;&lt;mo&gt;⌋&lt;/mo&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;, then &lt;span&gt;&lt;math&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt; is maximally edge-connected, and this result is best possible. We also give lower bounds on &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;λ&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; for the case that &lt;span&gt;&lt;math&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt; is not maximally edge-connected: We prove that &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;λ&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;≥&lt;/mo&gt;&lt;mi&gt;κ&lt;/mi&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mi&gt;κ&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;, where &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;κ&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; denotes the connectivity of &lt;span&gt;&lt;math&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;, i.e., the minimum number of vertices whose removal renders &lt;span&gt;&lt;math&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; disconnected, and this bound is sharp. We further prove that &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;λ&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;≥&lt;/mo&gt;&lt;mfrac&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/mfrac&gt;&lt;mi&gt;λ&lt;/mi&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;3&lt;/mn&gt;&lt;mo&gt;/&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mfrac&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/mfrac&gt;&lt;mi&gt;λ&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/m","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"366 ","pages":"Pages 250-256"},"PeriodicalIF":1.0,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143161757","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
General sum-connectivity index of unicyclic graphs with given maximum degree
IF 1 3区 数学
Discrete Applied Mathematics Pub Date : 2025-01-30 DOI: 10.1016/j.dam.2025.01.033
Elize Swartz, Tomáš Vetrík
{"title":"General sum-connectivity index of unicyclic graphs with given maximum degree","authors":"Elize Swartz,&nbsp;Tomáš Vetrík","doi":"10.1016/j.dam.2025.01.033","DOIUrl":"10.1016/j.dam.2025.01.033","url":null,"abstract":"<div><div>For <span><math><mrow><mi>a</mi><mo>∈</mo><mi>R</mi></mrow></math></span>, the general sum-connectivity index <span><math><msub><mrow><mi>χ</mi></mrow><mrow><mi>a</mi></mrow></msub></math></span> of a graph <span><math><mi>G</mi></math></span> is defined as <span><math><mrow><msub><mrow><mi>χ</mi></mrow><mrow><mi>a</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>=</mo><msub><mrow><mo>∑</mo></mrow><mrow><mi>u</mi><mi>v</mi><mo>∈</mo><mi>E</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></msub><msup><mrow><mrow><mo>[</mo><msub><mrow><mi>d</mi></mrow><mrow><mi>G</mi></mrow></msub><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow><mo>+</mo><msub><mrow><mi>d</mi></mrow><mrow><mi>G</mi></mrow></msub><mrow><mo>(</mo><mi>v</mi><mo>)</mo></mrow><mo>]</mo></mrow></mrow><mrow><mi>a</mi></mrow></msup></mrow></math></span>, where <span><math><mrow><mi>E</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> is the set of edges of <span><math><mi>G</mi></math></span>, and <span><math><mrow><msub><mrow><mi>d</mi></mrow><mrow><mi>G</mi></mrow></msub><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><msub><mrow><mi>d</mi></mrow><mrow><mi>G</mi></mrow></msub><mrow><mo>(</mo><mi>v</mi><mo>)</mo></mrow></mrow></math></span> are the degrees of vertices <span><math><mi>u</mi></math></span> and <span><math><mi>v</mi></math></span>, respectively. Among unicyclic graphs with given number of vertices and maximum degree, we present graphs having the largest and smallest values of <span><math><msub><mrow><mi>χ</mi></mrow><mrow><mi>a</mi></mrow></msub></math></span>, and we state cases which are still open. We also solve one of the open problems on <span><math><msub><mrow><mi>χ</mi></mrow><mrow><mi>a</mi></mrow></msub></math></span> for trees if <span><math><mrow><mn>0</mn><mo>&lt;</mo><mi>a</mi><mo>&lt;</mo><mn>1</mn></mrow></math></span>.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"366 ","pages":"Pages 238-249"},"PeriodicalIF":1.0,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143160549","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信