Alex McDonough , Ulrich Reitebuch , Martin Skrodzki
{"title":"Combinatorial and asymptotic results on the neighborhood grid","authors":"Alex McDonough , Ulrich Reitebuch , Martin Skrodzki","doi":"10.1016/j.dam.2025.03.028","DOIUrl":null,"url":null,"abstract":"<div><div>In various application fields, such as fluid-, cell-, or crowd-simulations, spatial data structures are very important. They answer nearest neighbor queries which are instrumental in performing necessary computations for, e.g., taking the next time step in the simulation. Correspondingly, various such data structures have been developed, one being the <em>neighborhood grid</em>.</div><div>In this paper, we consider combinatorial aspects of this data structure. Particularly, we show that an assumption on uniqueness, made in previous works, is not actually satisfied. We extend the notions of the neighborhood grid to arbitrary grid sizes and dimensions and provide two alternative, correct versions of the proof that was broken by the dissatisfied assumption.</div><div>Furthermore, we explore both the uniqueness of certain states of the data structure as well as when the number of these states is maximized. We provide a partial classification by using the hook-length formula for rectangular Young tableaux. Finally, we conjecture how to extend this to all 2-dimensional cases.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"372 ","pages":"Pages 48-64"},"PeriodicalIF":1.0000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166218X25001520","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
In various application fields, such as fluid-, cell-, or crowd-simulations, spatial data structures are very important. They answer nearest neighbor queries which are instrumental in performing necessary computations for, e.g., taking the next time step in the simulation. Correspondingly, various such data structures have been developed, one being the neighborhood grid.
In this paper, we consider combinatorial aspects of this data structure. Particularly, we show that an assumption on uniqueness, made in previous works, is not actually satisfied. We extend the notions of the neighborhood grid to arbitrary grid sizes and dimensions and provide two alternative, correct versions of the proof that was broken by the dissatisfied assumption.
Furthermore, we explore both the uniqueness of certain states of the data structure as well as when the number of these states is maximized. We provide a partial classification by using the hook-length formula for rectangular Young tableaux. Finally, we conjecture how to extend this to all 2-dimensional cases.
期刊介绍:
The aim of Discrete Applied Mathematics is to bring together research papers in different areas of algorithmic and applicable discrete mathematics as well as applications of combinatorial mathematics to informatics and various areas of science and technology. Contributions presented to the journal can be research papers, short notes, surveys, and possibly research problems. The "Communications" section will be devoted to the fastest possible publication of recent research results that are checked and recommended for publication by a member of the Editorial Board. The journal will also publish a limited number of book announcements as well as proceedings of conferences. These proceedings will be fully refereed and adhere to the normal standards of the journal.
Potential authors are advised to view the journal and the open calls-for-papers of special issues before submitting their manuscripts. Only high-quality, original work that is within the scope of the journal or the targeted special issue will be considered.