Descent generating polynomials for (n−3)- and (n−4)-stack-sortable (pattern-avoiding) permutations

IF 1 3区 数学 Q3 MATHEMATICS, APPLIED
Philip B. Zhang , Sergey Kitaev
{"title":"Descent generating polynomials for (n−3)- and (n−4)-stack-sortable (pattern-avoiding) permutations","authors":"Philip B. Zhang ,&nbsp;Sergey Kitaev","doi":"10.1016/j.dam.2025.03.032","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we find distribution of descents over <span><math><mrow><mo>(</mo><mi>n</mi><mo>−</mo><mn>3</mn><mo>)</mo></mrow></math></span>- and <span><math><mrow><mo>(</mo><mi>n</mi><mo>−</mo><mn>4</mn><mo>)</mo></mrow></math></span>-stack-sortable permutations in terms of Eulerian polynomials. Our results generalize the enumeration results by Claesson, Dukes, and Steingrímsson on <span><math><mrow><mo>(</mo><mi>n</mi><mo>−</mo><mn>3</mn><mo>)</mo></mrow></math></span>- and <span><math><mrow><mo>(</mo><mi>n</mi><mo>−</mo><mn>4</mn><mo>)</mo></mrow></math></span>-stack-sortable permutations. Moreover, we find distribution of descents on <span><math><mrow><mo>(</mo><mi>n</mi><mo>−</mo><mn>2</mn><mo>)</mo></mrow></math></span>-, <span><math><mrow><mo>(</mo><mi>n</mi><mo>−</mo><mn>3</mn><mo>)</mo></mrow></math></span>- and <span><math><mrow><mo>(</mo><mi>n</mi><mo>−</mo><mn>4</mn><mo>)</mo></mrow></math></span>-stack-sortable permutations that avoid any given pattern of length 3, which extends known results in the literature on distribution of descents over pattern-avoiding 1- and 2-stack-sortable permutations. Our distribution results also give enumeration of <span><math><mrow><mo>(</mo><mi>n</mi><mo>−</mo><mn>2</mn><mo>)</mo></mrow></math></span>-, <span><math><mrow><mo>(</mo><mi>n</mi><mo>−</mo><mn>3</mn><mo>)</mo></mrow></math></span>- and <span><math><mrow><mo>(</mo><mi>n</mi><mo>−</mo><mn>4</mn><mo>)</mo></mrow></math></span>-stack-sortable permutations avoiding any pattern of length 3. One of our conjectures links our work to stack-sorting with restricted stacks, and the other conjecture states that 213-avoiding permutations sortable with <span><math><mi>t</mi></math></span> stacks are equinumerous with 321-avoiding permutations sortable with <span><math><mi>t</mi></math></span> stacks for any <span><math><mi>t</mi></math></span>.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"372 ","pages":"Pages 1-14"},"PeriodicalIF":1.0000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166218X25001568","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we find distribution of descents over (n3)- and (n4)-stack-sortable permutations in terms of Eulerian polynomials. Our results generalize the enumeration results by Claesson, Dukes, and Steingrímsson on (n3)- and (n4)-stack-sortable permutations. Moreover, we find distribution of descents on (n2)-, (n3)- and (n4)-stack-sortable permutations that avoid any given pattern of length 3, which extends known results in the literature on distribution of descents over pattern-avoiding 1- and 2-stack-sortable permutations. Our distribution results also give enumeration of (n2)-, (n3)- and (n4)-stack-sortable permutations avoiding any pattern of length 3. One of our conjectures links our work to stack-sorting with restricted stacks, and the other conjecture states that 213-avoiding permutations sortable with t stacks are equinumerous with 321-avoiding permutations sortable with t stacks for any t.
下降生成(n−3)和(n−4)堆栈可排序(避免模式)排列的多项式
在本文中,我们用欧拉多项式找到了(n−3)-和(n−4)-堆栈可排序排列的下降分布。我们的结果推广了Claesson, Dukes和Steingrímsson关于(n−3)-和(n−4)-堆栈可排序排列的枚举结果。此外,我们发现了(n−2)-,(n−3)-和(n−4)-堆栈可排序排列上的下降分布,避免了任何长度为3的给定模式,这扩展了文献中关于避免模式的1-和2-堆栈可排序排列上下降分布的已知结果。我们的分布结果还给出了(n−2)-,(n−3)-和(n−4)-堆栈可排序排列的枚举,避免了任何长度为3的模式。我们的一个猜想将我们的工作与限制堆栈的堆栈排序联系起来,另一个猜想指出,对于任何t, t堆栈可排序的213-避免排列与t堆栈可排序的321-避免排列是等量的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Discrete Applied Mathematics
Discrete Applied Mathematics 数学-应用数学
CiteScore
2.30
自引率
9.10%
发文量
422
审稿时长
4.5 months
期刊介绍: The aim of Discrete Applied Mathematics is to bring together research papers in different areas of algorithmic and applicable discrete mathematics as well as applications of combinatorial mathematics to informatics and various areas of science and technology. Contributions presented to the journal can be research papers, short notes, surveys, and possibly research problems. The "Communications" section will be devoted to the fastest possible publication of recent research results that are checked and recommended for publication by a member of the Editorial Board. The journal will also publish a limited number of book announcements as well as proceedings of conferences. These proceedings will be fully refereed and adhere to the normal standards of the journal. Potential authors are advised to view the journal and the open calls-for-papers of special issues before submitting their manuscripts. Only high-quality, original work that is within the scope of the journal or the targeted special issue will be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信