λK(n,2)的四循环分解

IF 1 3区 数学 Q3 MATHEMATICS, APPLIED
Cecily Sahai C., Sampath Kumar S., Arputha Jose T.
{"title":"λK(n,2)的四循环分解","authors":"Cecily Sahai C.,&nbsp;Sampath Kumar S.,&nbsp;Arputha Jose T.","doi":"10.1016/j.dam.2025.03.033","DOIUrl":null,"url":null,"abstract":"<div><div>The Kneser graph <span><math><mrow><mi>K</mi><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>k</mi><mo>)</mo></mrow></mrow></math></span> is the graph with the <span><math><mi>k</mi></math></span>-subsets of a fixed <span><math><mi>n</mi></math></span>-set as its vertices, with two <span><math><mi>k</mi></math></span>-subsets adjacent if they are disjoint. Given <span><math><mi>n</mi></math></span> and <span><math><mi>k</mi></math></span>, the existence of Hamilton cycle in <span><math><mrow><mi>K</mi><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>k</mi><mo>)</mo></mrow></mrow></math></span> was considered by many authors since 1978. Recently, Merino et al. (2023) proved that all connected Kneser graphs <span><math><mrow><mi>K</mi><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>k</mi><mo>)</mo></mrow></mrow></math></span> are Hamiltonian. In this paper, we examine the necessary and sufficient conditions for the existence of a 4-cycle decomposition of <span><math><mi>λ</mi></math></span>-fold Kneser graphs <span><math><mrow><mi>λ</mi><mi>K</mi><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mn>2</mn><mo>)</mo></mrow></mrow></math></span> and <span><math><mi>λ</mi></math></span>-fold Bipartite Kneser graphs <span><math><mrow><mi>λ</mi><mi>B</mi><mi>K</mi><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mn>2</mn><mo>)</mo></mrow></mrow></math></span>. The main result of this paper may shed some lights on the <span><math><mi>k</mi></math></span>-cycle decomposition problem of Kneser graphs.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"372 ","pages":"Pages 65-70"},"PeriodicalIF":1.0000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Four cycle decomposition of λK(n,2)\",\"authors\":\"Cecily Sahai C.,&nbsp;Sampath Kumar S.,&nbsp;Arputha Jose T.\",\"doi\":\"10.1016/j.dam.2025.03.033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The Kneser graph <span><math><mrow><mi>K</mi><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>k</mi><mo>)</mo></mrow></mrow></math></span> is the graph with the <span><math><mi>k</mi></math></span>-subsets of a fixed <span><math><mi>n</mi></math></span>-set as its vertices, with two <span><math><mi>k</mi></math></span>-subsets adjacent if they are disjoint. Given <span><math><mi>n</mi></math></span> and <span><math><mi>k</mi></math></span>, the existence of Hamilton cycle in <span><math><mrow><mi>K</mi><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>k</mi><mo>)</mo></mrow></mrow></math></span> was considered by many authors since 1978. Recently, Merino et al. (2023) proved that all connected Kneser graphs <span><math><mrow><mi>K</mi><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>k</mi><mo>)</mo></mrow></mrow></math></span> are Hamiltonian. In this paper, we examine the necessary and sufficient conditions for the existence of a 4-cycle decomposition of <span><math><mi>λ</mi></math></span>-fold Kneser graphs <span><math><mrow><mi>λ</mi><mi>K</mi><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mn>2</mn><mo>)</mo></mrow></mrow></math></span> and <span><math><mi>λ</mi></math></span>-fold Bipartite Kneser graphs <span><math><mrow><mi>λ</mi><mi>B</mi><mi>K</mi><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mn>2</mn><mo>)</mo></mrow></mrow></math></span>. The main result of this paper may shed some lights on the <span><math><mi>k</mi></math></span>-cycle decomposition problem of Kneser graphs.</div></div>\",\"PeriodicalId\":50573,\"journal\":{\"name\":\"Discrete Applied Mathematics\",\"volume\":\"372 \",\"pages\":\"Pages 65-70\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0166218X2500157X\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166218X2500157X","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

Kneser图K(n, K)是以固定n集的K个子集为顶点的图,如果两个K个子集不相交,则它们相邻。给定n和k,自1978年以来,许多作者认为k (n,k)中的Hamilton环存在。最近,Merino et al.(2023)证明了所有连通的Kneser图K(n, K)都是哈密顿图。本文研究了λ重Kneser图λK(n,2)和λ重二部Kneser图λBK(n,2)的4环分解存在的充分必要条件。本文的主要结果可能对Kneser图的k环分解问题有所启发。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Four cycle decomposition of λK(n,2)
The Kneser graph K(n,k) is the graph with the k-subsets of a fixed n-set as its vertices, with two k-subsets adjacent if they are disjoint. Given n and k, the existence of Hamilton cycle in K(n,k) was considered by many authors since 1978. Recently, Merino et al. (2023) proved that all connected Kneser graphs K(n,k) are Hamiltonian. In this paper, we examine the necessary and sufficient conditions for the existence of a 4-cycle decomposition of λ-fold Kneser graphs λK(n,2) and λ-fold Bipartite Kneser graphs λBK(n,2). The main result of this paper may shed some lights on the k-cycle decomposition problem of Kneser graphs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Discrete Applied Mathematics
Discrete Applied Mathematics 数学-应用数学
CiteScore
2.30
自引率
9.10%
发文量
422
审稿时长
4.5 months
期刊介绍: The aim of Discrete Applied Mathematics is to bring together research papers in different areas of algorithmic and applicable discrete mathematics as well as applications of combinatorial mathematics to informatics and various areas of science and technology. Contributions presented to the journal can be research papers, short notes, surveys, and possibly research problems. The "Communications" section will be devoted to the fastest possible publication of recent research results that are checked and recommended for publication by a member of the Editorial Board. The journal will also publish a limited number of book announcements as well as proceedings of conferences. These proceedings will be fully refereed and adhere to the normal standards of the journal. Potential authors are advised to view the journal and the open calls-for-papers of special issues before submitting their manuscripts. Only high-quality, original work that is within the scope of the journal or the targeted special issue will be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信