Mingzu Zhang , Hongxi Liu , Chia-Wei Lee , Weihua Yang
{"title":"Edge isoperimetric method: At least 2/3 of h-extra edge-connectivity of a kind of cube-based graphs concentrates on 2n−1","authors":"Mingzu Zhang , Hongxi Liu , Chia-Wei Lee , Weihua Yang","doi":"10.1016/j.dam.2025.03.019","DOIUrl":null,"url":null,"abstract":"<div><div>The edge isopermetric problem on hypercube <span><math><msub><mrow><mi>Q</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>, proposed by Harper in 1964, is to find a vertex subset with cardinality <span><math><mi>m</mi></math></span> in <span><math><msub><mrow><mi>Q</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>, such that the edge cut separating any vertex subset with cardinality <span><math><mi>m</mi></math></span> from its complement has minimum size. Since Harper, Lindsey, Bernstein and Hart solved the edge isoperimetric problem of <span><math><msub><mrow><mi>Q</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> by lexicographic order, the edge isoperimetric problem is intimately tied to many-to-many disjoint paths problem. The maximum cardinality of edge disjoint paths connecting any two disjoint connected subgraphs of order <span><math><mi>h</mi></math></span> in a connected graph <span><math><mi>G</mi></math></span> can be defined by the minimum modified edge-cut, called the <span><math><mi>h</mi></math></span>-extra edge-connectivity of <span><math><mi>G</mi></math></span>. It is the cardinality of the minimum set of edges in a connected graph <span><math><mi>G</mi></math></span>, if such a set exists, whose deletion disconnects <span><math><mi>G</mi></math></span> and leaves every remaining component with at least <span><math><mi>h</mi></math></span> vertices. The <span><math><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>k</mi><mo>)</mo></mrow></math></span>-enhanced hypercubes <span><math><msub><mrow><mi>Q</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>k</mi></mrow></msub></math></span> are constructed by adding a matching between some pair copies of <span><math><mi>k</mi></math></span> dimensional subcubes <span><math><msub><mrow><mi>Q</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span> with <span><math><mrow><mn>1</mn><mo>≤</mo><mi>k</mi><mo>≤</mo><mi>n</mi><mo>−</mo><mn>1</mn></mrow></math></span>. The distribution of the values of the <span><math><mi>h</mi></math></span>-extra edge-connectivity on a recursive graph is uneven and presents a concentration phenomenon. In this paper, we start with analysing the fractal properties of the optimal solution of the edge isoperimetric problem of <span><math><msub><mrow><mi>Q</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>k</mi></mrow></msub></math></span>. And it is shown that although the members of <span><math><msub><mrow><mi>Q</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>k</mi></mrow></msub></math></span> are not isomorphic to each other according to different <span><math><mi>k</mi></math></span> where <span><math><mrow><mn>2</mn><mo>≤</mo><mi>k</mi><mo>≤</mo><mi>n</mi><mo>−</mo><mn>1</mn></mrow></math></span>, when <span><math><mi>n</mi></math></span> approaches infinity, the <span><math><mi>h</mi></math></span>-extra edge-connectivity of <span><math><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>k</mi><mo>)</mo></mrow></math></span>-enhanced hypercubes presents a concentration phenomenon. That is, for at least <span><math><mrow><mn>2</mn><mo>/</mo><mn>3</mn></mrow></math></span> of <span><math><mrow><mi>h</mi><mo>≤</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msup></mrow></math></span>, the corresponding exact values <span><math><mrow><msub><mrow><mi>λ</mi></mrow><mrow><mi>h</mi></mrow></msub><mrow><mo>(</mo><msub><mrow><mi>Q</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>k</mi></mrow></msub><mo>)</mo></mrow></mrow></math></span> concentrate on <span><math><msup><mrow><mn>2</mn></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msup></math></span> for <span><math><mrow><mfenced><mrow><msup><mrow><mn>2</mn></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msup><mo>/</mo><mn>3</mn></mrow></mfenced><mo>≤</mo><mi>h</mi><mo>≤</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msup></mrow></math></span>.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"370 ","pages":"Pages 167-174"},"PeriodicalIF":1.0000,"publicationDate":"2025-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166218X25001386","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
The edge isopermetric problem on hypercube , proposed by Harper in 1964, is to find a vertex subset with cardinality in , such that the edge cut separating any vertex subset with cardinality from its complement has minimum size. Since Harper, Lindsey, Bernstein and Hart solved the edge isoperimetric problem of by lexicographic order, the edge isoperimetric problem is intimately tied to many-to-many disjoint paths problem. The maximum cardinality of edge disjoint paths connecting any two disjoint connected subgraphs of order in a connected graph can be defined by the minimum modified edge-cut, called the -extra edge-connectivity of . It is the cardinality of the minimum set of edges in a connected graph , if such a set exists, whose deletion disconnects and leaves every remaining component with at least vertices. The -enhanced hypercubes are constructed by adding a matching between some pair copies of dimensional subcubes with . The distribution of the values of the -extra edge-connectivity on a recursive graph is uneven and presents a concentration phenomenon. In this paper, we start with analysing the fractal properties of the optimal solution of the edge isoperimetric problem of . And it is shown that although the members of are not isomorphic to each other according to different where , when approaches infinity, the -extra edge-connectivity of -enhanced hypercubes presents a concentration phenomenon. That is, for at least of , the corresponding exact values concentrate on for .
哈珀于 1964 年提出了超立方体 Qn 上的边等周问题,即在 Qn 中找到一个心数为 m 的顶点子集,使得任何心数为 m 的顶点子集与其补集之间的边切最小。由于哈珀、林赛、伯恩斯坦和哈特按词典顺序解决了 Qn 的边等周问题,因此边等周问题与多对多不相交路径问题密切相关。连接连通图 G 中任何两个阶数为 h 的互不相邻子图的边互不相交路径的最大卡片数,可以用最小修正边切定义,称为 G 的 h-额外边连接性。它是连通图 G 中最小边集的卡片数(如果存在这样的边集),删除该边集后,G 将断开连接,剩下的每个部分至少有 h 个顶点。(n,k)增强超立方体 Qn,k 是通过在 k 维子立方体 Qk 的某些对副本之间添加 1≤k≤n-1 的匹配而构建的。递归图上的 h 外边连通性值的分布是不均匀的,并呈现集中现象。本文首先分析了 Qn,k 边等周问题最优解的分形特性。结果表明,虽然 Qn,k 的成员之间根据 2≤k≤n-1 的不同 k 并不同构,但当 n 接近无穷大时,(n,k)增强超立方体的 h 外边连接性呈现集中现象。也就是说,对于至少 2/3 的 h≤2n-1,相应的精确值 λh(Qn,k)集中在 2n-1/3≤h≤2n-1 的 2n-1 上。
期刊介绍:
The aim of Discrete Applied Mathematics is to bring together research papers in different areas of algorithmic and applicable discrete mathematics as well as applications of combinatorial mathematics to informatics and various areas of science and technology. Contributions presented to the journal can be research papers, short notes, surveys, and possibly research problems. The "Communications" section will be devoted to the fastest possible publication of recent research results that are checked and recommended for publication by a member of the Editorial Board. The journal will also publish a limited number of book announcements as well as proceedings of conferences. These proceedings will be fully refereed and adhere to the normal standards of the journal.
Potential authors are advised to view the journal and the open calls-for-papers of special issues before submitting their manuscripts. Only high-quality, original work that is within the scope of the journal or the targeted special issue will be considered.