Zhen Ji , Zhiwei Guo , Eddie Cheng , Ralf Klasing , Yaping Mao
{"title":"The distance-edge-monitoring numbers of subdivision graphs","authors":"Zhen Ji , Zhiwei Guo , Eddie Cheng , Ralf Klasing , Yaping Mao","doi":"10.1016/j.dam.2025.03.015","DOIUrl":null,"url":null,"abstract":"<div><div>For a vertex set <span><math><mi>M</mi></math></span> and an edge <span><math><mi>e</mi></math></span> of a connected graph <span><math><mi>G</mi></math></span>, let <span><math><mrow><mi>P</mi><mrow><mo>(</mo><mi>M</mi><mo>,</mo><mi>e</mi><mo>)</mo></mrow></mrow></math></span> be the set of pairs <span><math><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></mrow></math></span> with <span><math><mrow><mi>x</mi><mo>∈</mo><mi>M</mi></mrow></math></span> and <span><math><mrow><mi>y</mi><mo>∈</mo><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> such that <span><math><mrow><msub><mrow><mi>d</mi></mrow><mrow><mi>G</mi></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></mrow><mo>≠</mo><msub><mrow><mi>d</mi></mrow><mrow><mi>G</mi><mo>−</mo><mi>e</mi></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></mrow></mrow></math></span>. For a vertex <span><math><mi>x</mi></math></span>, let <span><math><mrow><mi>E</mi><mi>M</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></math></span> be the set of edges <span><math><mi>e</mi></math></span> such that there exists a vertex <span><math><mi>v</mi></math></span> satisfying <span><math><mrow><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>v</mi><mo>)</mo></mrow><mo>∈</mo><mi>P</mi><mrow><mo>(</mo><mrow><mo>{</mo><mi>x</mi><mo>}</mo></mrow><mo>,</mo><mi>e</mi><mo>)</mo></mrow></mrow></math></span> in <span><math><mi>G</mi></math></span>. A set <span><math><mi>M</mi></math></span> of vertices of a graph <span><math><mi>G</mi></math></span> is called a distance-edge-monitoring (DEM for short) set if, for every edge <span><math><mi>e</mi></math></span> of <span><math><mi>G</mi></math></span>, there exist vertices <span><math><mrow><mi>x</mi><mo>∈</mo><mi>M</mi></mrow></math></span> and <span><math><mrow><mi>y</mi><mo>∈</mo><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> such that <span><math><mi>e</mi></math></span> belongs to all shortest paths between <span><math><mi>x</mi></math></span> and <span><math><mi>y</mi></math></span>. We denote by <span><math><mrow><mo>dem</mo><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> the size of a smallest DEM set of <span><math><mi>G</mi></math></span>. Given a graph <span><math><mi>G</mi></math></span>, subdividing one edge <span><math><mrow><mi>u</mi><mi>v</mi></mrow></math></span> means removing the edge <span><math><mrow><mi>u</mi><mi>v</mi></mrow></math></span>, adding an extra vertex <span><math><mi>w</mi></math></span>, and adding the edges <span><math><mrow><mi>u</mi><mi>w</mi></mrow></math></span> and <span><math><mrow><mi>w</mi><mi>v</mi></mrow></math></span>. The subdivision graph of <span><math><mi>G</mi></math></span>, denoted by <span><math><mrow><mi>S</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>, is obtained from the graph <span><math><mi>G</mi></math></span> by subdividing all its edges. In this paper, we study the DEM numbers of subdivision graphs for various classes of graphs including trees, cycles, complete graphs, grids and friendship graphs. We show that for every positive integers <span><math><mrow><mi>a</mi><mo>,</mo><mi>b</mi></mrow></math></span> with <span><math><mrow><mn>1</mn><mo><</mo><mi>a</mi><mo>≤</mo><mi>b</mi></mrow></math></span>, there exists a graph <span><math><mi>G</mi></math></span> such that <span><math><mrow><mo>dem</mo><mrow><mo>(</mo><mi>S</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>)</mo></mrow><mo>=</mo><mi>a</mi></mrow></math></span> and <span><math><mrow><mo>dem</mo><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>=</mo><mi>b</mi></mrow></math></span>. Furthermore, we obtain sharp upper and lower bounds on <span><math><mrow><mo>|</mo><mi>E</mi><mi>M</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>|</mo></mrow></math></span> and <span><math><mrow><mo>dem</mo><mrow><mo>(</mo><mi>S</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>)</mo></mrow></mrow></math></span> for every <span><math><mrow><mi>x</mi><mo>∈</mo><mi>V</mi><mrow><mo>(</mo><mi>S</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>)</mo></mrow></mrow></math></span>. We also give sufficient conditions under which <span><math><mrow><mi>S</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> achieves specific values of <span><math><mrow><mo>dem</mo><mrow><mo>(</mo><mi>S</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>)</mo></mrow></mrow></math></span> that are close to one of the bounds.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"372 ","pages":"Pages 37-47"},"PeriodicalIF":1.0000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166218X25001428","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
For a vertex set and an edge of a connected graph , let be the set of pairs with and such that . For a vertex , let be the set of edges such that there exists a vertex satisfying in . A set of vertices of a graph is called a distance-edge-monitoring (DEM for short) set if, for every edge of , there exist vertices and such that belongs to all shortest paths between and . We denote by the size of a smallest DEM set of . Given a graph , subdividing one edge means removing the edge , adding an extra vertex , and adding the edges and . The subdivision graph of , denoted by , is obtained from the graph by subdividing all its edges. In this paper, we study the DEM numbers of subdivision graphs for various classes of graphs including trees, cycles, complete graphs, grids and friendship graphs. We show that for every positive integers with , there exists a graph such that and . Furthermore, we obtain sharp upper and lower bounds on and for every . We also give sufficient conditions under which achieves specific values of that are close to one of the bounds.
期刊介绍:
The aim of Discrete Applied Mathematics is to bring together research papers in different areas of algorithmic and applicable discrete mathematics as well as applications of combinatorial mathematics to informatics and various areas of science and technology. Contributions presented to the journal can be research papers, short notes, surveys, and possibly research problems. The "Communications" section will be devoted to the fastest possible publication of recent research results that are checked and recommended for publication by a member of the Editorial Board. The journal will also publish a limited number of book announcements as well as proceedings of conferences. These proceedings will be fully refereed and adhere to the normal standards of the journal.
Potential authors are advised to view the journal and the open calls-for-papers of special issues before submitting their manuscripts. Only high-quality, original work that is within the scope of the journal or the targeted special issue will be considered.