{"title":"完美的k匹配,k因子临界和a α谱半径","authors":"Mengyuan Niu , Shanshan Zhang , Xiumei Wang","doi":"10.1016/j.dam.2025.07.020","DOIUrl":null,"url":null,"abstract":"<div><div>A <span><math><mi>k</mi></math></span>-<em>matching</em> of a graph <span><math><mi>G</mi></math></span> is a function <span><math><mi>f</mi></math></span>: <span><math><mrow><mi>E</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>→</mo><mrow><mo>{</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>k</mi><mo>}</mo></mrow></mrow></math></span> satisfying <span><math><mrow><munder><mrow><mo>∑</mo></mrow><mrow><mi>e</mi><mo>∈</mo><mi>∂</mi><mrow><mo>(</mo><mi>v</mi><mo>)</mo></mrow></mrow></munder><mi>f</mi><mrow><mo>(</mo><mi>e</mi><mo>)</mo></mrow><mo>≤</mo><mi>k</mi></mrow></math></span> for any vertex <span><math><mrow><mi>v</mi><mo>∈</mo><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>. A <span><math><mi>k</mi></math></span>-matching of a graph <span><math><mi>G</mi></math></span> is <em>perfect</em> if <span><math><mrow><munder><mrow><mo>∑</mo></mrow><mrow><mi>e</mi><mo>∈</mo><mi>∂</mi><mrow><mo>(</mo><mi>v</mi><mo>)</mo></mrow></mrow></munder><mi>f</mi><mrow><mo>(</mo><mi>e</mi><mo>)</mo></mrow><mo>=</mo><mi>k</mi></mrow></math></span> for every vertex <span><math><mrow><mi>v</mi><mo>∈</mo><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>. A graph <span><math><mi>G</mi></math></span> of order <span><math><mi>n</mi></math></span> is <em>k-factor-critical</em> if the removal of any set of <span><math><mi>k</mi></math></span> vertices of <span><math><mi>G</mi></math></span> results in a graph with a perfect matching. Let <span><math><mrow><mi>A</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><mi>D</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> be the adjacency matrix and the degree diagonal matrix of <span><math><mi>G</mi></math></span>. For <span><math><mrow><mi>α</mi><mo>∈</mo><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow></mrow></math></span>, Nikiforov <span><math><mrow><mo>(</mo><mn>2017</mn><mo>)</mo></mrow></math></span> introduced the <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>α</mi></mrow></msub></math></span>-matrix of G as follows: <span><math><mrow><msub><mrow><mi>A</mi></mrow><mrow><mi>α</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>=</mo><mi>α</mi><mi>D</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>+</mo><mrow><mo>(</mo><mn>1</mn><mo>−</mo><mi>α</mi><mo>)</mo></mrow><mi>A</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>.</mo></mrow></math></span> In this paper, according to the <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>α</mi></mrow></msub></math></span>-spectral radius, we provide two sufficient conditions to ensure that a graph is <span><math><mi>k</mi></math></span>-factor-critical and has a perfect <span><math><mi>k</mi></math></span>-matching, respectively.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"376 ","pages":"Pages 384-393"},"PeriodicalIF":1.0000,"publicationDate":"2025-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Perfect k-matching, k-factor-critical and Aα-spectral radius\",\"authors\":\"Mengyuan Niu , Shanshan Zhang , Xiumei Wang\",\"doi\":\"10.1016/j.dam.2025.07.020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A <span><math><mi>k</mi></math></span>-<em>matching</em> of a graph <span><math><mi>G</mi></math></span> is a function <span><math><mi>f</mi></math></span>: <span><math><mrow><mi>E</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>→</mo><mrow><mo>{</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>k</mi><mo>}</mo></mrow></mrow></math></span> satisfying <span><math><mrow><munder><mrow><mo>∑</mo></mrow><mrow><mi>e</mi><mo>∈</mo><mi>∂</mi><mrow><mo>(</mo><mi>v</mi><mo>)</mo></mrow></mrow></munder><mi>f</mi><mrow><mo>(</mo><mi>e</mi><mo>)</mo></mrow><mo>≤</mo><mi>k</mi></mrow></math></span> for any vertex <span><math><mrow><mi>v</mi><mo>∈</mo><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>. A <span><math><mi>k</mi></math></span>-matching of a graph <span><math><mi>G</mi></math></span> is <em>perfect</em> if <span><math><mrow><munder><mrow><mo>∑</mo></mrow><mrow><mi>e</mi><mo>∈</mo><mi>∂</mi><mrow><mo>(</mo><mi>v</mi><mo>)</mo></mrow></mrow></munder><mi>f</mi><mrow><mo>(</mo><mi>e</mi><mo>)</mo></mrow><mo>=</mo><mi>k</mi></mrow></math></span> for every vertex <span><math><mrow><mi>v</mi><mo>∈</mo><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>. A graph <span><math><mi>G</mi></math></span> of order <span><math><mi>n</mi></math></span> is <em>k-factor-critical</em> if the removal of any set of <span><math><mi>k</mi></math></span> vertices of <span><math><mi>G</mi></math></span> results in a graph with a perfect matching. Let <span><math><mrow><mi>A</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><mi>D</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> be the adjacency matrix and the degree diagonal matrix of <span><math><mi>G</mi></math></span>. For <span><math><mrow><mi>α</mi><mo>∈</mo><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow></mrow></math></span>, Nikiforov <span><math><mrow><mo>(</mo><mn>2017</mn><mo>)</mo></mrow></math></span> introduced the <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>α</mi></mrow></msub></math></span>-matrix of G as follows: <span><math><mrow><msub><mrow><mi>A</mi></mrow><mrow><mi>α</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>=</mo><mi>α</mi><mi>D</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>+</mo><mrow><mo>(</mo><mn>1</mn><mo>−</mo><mi>α</mi><mo>)</mo></mrow><mi>A</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>.</mo></mrow></math></span> In this paper, according to the <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>α</mi></mrow></msub></math></span>-spectral radius, we provide two sufficient conditions to ensure that a graph is <span><math><mi>k</mi></math></span>-factor-critical and has a perfect <span><math><mi>k</mi></math></span>-matching, respectively.</div></div>\",\"PeriodicalId\":50573,\"journal\":{\"name\":\"Discrete Applied Mathematics\",\"volume\":\"376 \",\"pages\":\"Pages 384-393\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0166218X25004111\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166218X25004111","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Perfect k-matching, k-factor-critical and Aα-spectral radius
A -matching of a graph is a function : satisfying for any vertex . A -matching of a graph is perfect if for every vertex . A graph of order is k-factor-critical if the removal of any set of vertices of results in a graph with a perfect matching. Let and be the adjacency matrix and the degree diagonal matrix of . For , Nikiforov introduced the -matrix of G as follows: In this paper, according to the -spectral radius, we provide two sufficient conditions to ensure that a graph is -factor-critical and has a perfect -matching, respectively.
期刊介绍:
The aim of Discrete Applied Mathematics is to bring together research papers in different areas of algorithmic and applicable discrete mathematics as well as applications of combinatorial mathematics to informatics and various areas of science and technology. Contributions presented to the journal can be research papers, short notes, surveys, and possibly research problems. The "Communications" section will be devoted to the fastest possible publication of recent research results that are checked and recommended for publication by a member of the Editorial Board. The journal will also publish a limited number of book announcements as well as proceedings of conferences. These proceedings will be fully refereed and adhere to the normal standards of the journal.
Potential authors are advised to view the journal and the open calls-for-papers of special issues before submitting their manuscripts. Only high-quality, original work that is within the scope of the journal or the targeted special issue will be considered.