{"title":"多项式图完美匹配的一些新颖的极大极小结果","authors":"Chunhu Sun , Heping Zhang","doi":"10.1016/j.dam.2025.07.030","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><mi>G</mi></math></span> be a graph with a perfect matching <span><math><mi>M</mi></math></span>. The forcing number of <span><math><mi>M</mi></math></span> in <span><math><mi>G</mi></math></span>, denoted by <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>G</mi><mo>,</mo><mi>M</mi><mo>)</mo></mrow></mrow></math></span>, is the minimal size of an edge subset of <span><math><mi>M</mi></math></span> that are contained in no other perfect matchings of <span><math><mi>G</mi></math></span>, and the anti-forcing number of <span><math><mi>M</mi></math></span> in <span><math><mi>G</mi></math></span>, denoted by <span><math><mrow><mi>a</mi><mi>f</mi><mrow><mo>(</mo><mi>G</mi><mo>,</mo><mi>M</mi><mo>)</mo></mrow></mrow></math></span>, is the minimal size of an edge subset of <span><math><mrow><mi>E</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> whose deletion results in a subgraph with a unique perfect matching <span><math><mi>M</mi></math></span>. For a polyomino graph <span><math><mi>P</mi></math></span>, Zhou and Zhang (2016) established a minimax result: For every perfect matching <span><math><mi>M</mi></math></span> of <span><math><mi>P</mi></math></span> with the maximum forcing number or minus one, <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>P</mi><mo>,</mo><mi>M</mi><mo>)</mo></mrow></mrow></math></span> is equal to the maximum number of disjoint <span><math><mi>M</mi></math></span>-alternating squares in <span><math><mi>P</mi></math></span>. In this paper, we show that for every perfect matching <span><math><mi>M</mi></math></span> of a polyomino graph <span><math><mi>P</mi></math></span> which contains no 3 × 3 chessboard as a nice subgraph, <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>P</mi><mo>,</mo><mi>M</mi><mo>)</mo></mrow></mrow></math></span> is equal to the maximum number of disjoint <span><math><mi>M</mi></math></span>-alternating squares in <span><math><mi>P</mi></math></span>. Further we show that for every perfect matching <span><math><mi>M</mi></math></span> of <span><math><mi>P</mi></math></span>, <span><math><mrow><mi>a</mi><mi>f</mi><mrow><mo>(</mo><mi>P</mi><mo>,</mo><mi>M</mi><mo>)</mo></mrow></mrow></math></span> always equals the number of <span><math><mi>M</mi></math></span>-alternating squares of <span><math><mi>P</mi></math></span> if and only if <span><math><mi>P</mi></math></span> has no 1 × 3 chessboard as a nice subgraph.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"378 ","pages":"Pages 270-279"},"PeriodicalIF":1.0000,"publicationDate":"2025-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Some novel minimax results for perfect matchings of polyomino graphs\",\"authors\":\"Chunhu Sun , Heping Zhang\",\"doi\":\"10.1016/j.dam.2025.07.030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Let <span><math><mi>G</mi></math></span> be a graph with a perfect matching <span><math><mi>M</mi></math></span>. The forcing number of <span><math><mi>M</mi></math></span> in <span><math><mi>G</mi></math></span>, denoted by <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>G</mi><mo>,</mo><mi>M</mi><mo>)</mo></mrow></mrow></math></span>, is the minimal size of an edge subset of <span><math><mi>M</mi></math></span> that are contained in no other perfect matchings of <span><math><mi>G</mi></math></span>, and the anti-forcing number of <span><math><mi>M</mi></math></span> in <span><math><mi>G</mi></math></span>, denoted by <span><math><mrow><mi>a</mi><mi>f</mi><mrow><mo>(</mo><mi>G</mi><mo>,</mo><mi>M</mi><mo>)</mo></mrow></mrow></math></span>, is the minimal size of an edge subset of <span><math><mrow><mi>E</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> whose deletion results in a subgraph with a unique perfect matching <span><math><mi>M</mi></math></span>. For a polyomino graph <span><math><mi>P</mi></math></span>, Zhou and Zhang (2016) established a minimax result: For every perfect matching <span><math><mi>M</mi></math></span> of <span><math><mi>P</mi></math></span> with the maximum forcing number or minus one, <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>P</mi><mo>,</mo><mi>M</mi><mo>)</mo></mrow></mrow></math></span> is equal to the maximum number of disjoint <span><math><mi>M</mi></math></span>-alternating squares in <span><math><mi>P</mi></math></span>. In this paper, we show that for every perfect matching <span><math><mi>M</mi></math></span> of a polyomino graph <span><math><mi>P</mi></math></span> which contains no 3 × 3 chessboard as a nice subgraph, <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>P</mi><mo>,</mo><mi>M</mi><mo>)</mo></mrow></mrow></math></span> is equal to the maximum number of disjoint <span><math><mi>M</mi></math></span>-alternating squares in <span><math><mi>P</mi></math></span>. Further we show that for every perfect matching <span><math><mi>M</mi></math></span> of <span><math><mi>P</mi></math></span>, <span><math><mrow><mi>a</mi><mi>f</mi><mrow><mo>(</mo><mi>P</mi><mo>,</mo><mi>M</mi><mo>)</mo></mrow></mrow></math></span> always equals the number of <span><math><mi>M</mi></math></span>-alternating squares of <span><math><mi>P</mi></math></span> if and only if <span><math><mi>P</mi></math></span> has no 1 × 3 chessboard as a nice subgraph.</div></div>\",\"PeriodicalId\":50573,\"journal\":{\"name\":\"Discrete Applied Mathematics\",\"volume\":\"378 \",\"pages\":\"Pages 270-279\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0166218X25004202\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166218X25004202","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Some novel minimax results for perfect matchings of polyomino graphs
Let be a graph with a perfect matching . The forcing number of in , denoted by , is the minimal size of an edge subset of that are contained in no other perfect matchings of , and the anti-forcing number of in , denoted by , is the minimal size of an edge subset of whose deletion results in a subgraph with a unique perfect matching . For a polyomino graph , Zhou and Zhang (2016) established a minimax result: For every perfect matching of with the maximum forcing number or minus one, is equal to the maximum number of disjoint -alternating squares in . In this paper, we show that for every perfect matching of a polyomino graph which contains no 3 × 3 chessboard as a nice subgraph, is equal to the maximum number of disjoint -alternating squares in . Further we show that for every perfect matching of , always equals the number of -alternating squares of if and only if has no 1 × 3 chessboard as a nice subgraph.
期刊介绍:
The aim of Discrete Applied Mathematics is to bring together research papers in different areas of algorithmic and applicable discrete mathematics as well as applications of combinatorial mathematics to informatics and various areas of science and technology. Contributions presented to the journal can be research papers, short notes, surveys, and possibly research problems. The "Communications" section will be devoted to the fastest possible publication of recent research results that are checked and recommended for publication by a member of the Editorial Board. The journal will also publish a limited number of book announcements as well as proceedings of conferences. These proceedings will be fully refereed and adhere to the normal standards of the journal.
Potential authors are advised to view the journal and the open calls-for-papers of special issues before submitting their manuscripts. Only high-quality, original work that is within the scope of the journal or the targeted special issue will be considered.