Construction of regular homogeneously traceable nonhamiltonian graphs

IF 1 3区 数学 Q3 MATHEMATICS, APPLIED
Xining Liu, Pu Qiao
{"title":"Construction of regular homogeneously traceable nonhamiltonian graphs","authors":"Xining Liu,&nbsp;Pu Qiao","doi":"10.1016/j.dam.2025.08.052","DOIUrl":null,"url":null,"abstract":"<div><div>A graph is called homogeneously traceable if every vertex is an endpoint of a Hamilton path. In 1979 Chartrand, Gould and Kapoor proved that for every integer <span><math><mrow><mi>n</mi><mo>≥</mo><mn>9</mn><mo>,</mo></mrow></math></span> there exists a homogeneously traceable nonhamiltonian graph of order <span><math><mi>n</mi></math></span>. The graphs they constructed are irregular. Thus it is natural to consider the existence problem of regular homogeneously traceable nonhamiltonian graphs. In 2022 Hu and Zhan proved that for every even integer <span><math><mrow><mi>n</mi><mo>≥</mo><mn>10</mn></mrow></math></span>, there exists a cubic homogeneously traceable nonhamiltonian graph of order <span><math><mi>n</mi></math></span>, and for every integer <span><math><mrow><mi>n</mi><mo>≥</mo><mn>18</mn></mrow></math></span>, there exists a 4-regular homogeneously traceable nonhamiltonian graph of order <span><math><mi>n</mi></math></span>. They also posed the problem: Given an integer <span><math><mrow><mi>k</mi><mo>≥</mo><mn>4</mn></mrow></math></span>, determine the integers <span><math><mi>n</mi></math></span> such that there exists a <span><math><mi>k</mi></math></span>-regular homogeneously traceable nonhamiltonian graph of order <span><math><mi>n</mi></math></span>. We prove two results: (1) For every odd integer <span><math><mrow><mi>k</mi><mo>≥</mo><mn>5</mn></mrow></math></span>, integer <span><math><mrow><mi>p</mi><mo>≥</mo><mn>6</mn></mrow></math></span> and integer <span><math><mrow><mi>q</mi><mo>∈</mo><mrow><mo>{</mo><mn>0</mn><mo>,</mo><mn>2</mn><mo>,</mo><mn>4</mn><mo>,</mo><mn>6</mn><mo>}</mo></mrow></mrow></math></span>, there exists a <span><math><mi>k</mi></math></span>-regular homogeneously traceable nonhamiltonian graph of order <span><math><mrow><mi>p</mi><mrow><mo>(</mo><mi>k</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow><mo>+</mo><mi>q</mi></mrow></math></span>; (2) for every even integer <span><math><mrow><mi>k</mi><mo>≥</mo><mn>6</mn></mrow></math></span>, integer <span><math><mrow><mi>p</mi><mo>≥</mo><mn>6</mn></mrow></math></span> and integer <span><math><mrow><mi>q</mi><mo>∈</mo><mrow><mo>{</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mn>3</mn><mo>,</mo><mn>4</mn><mo>,</mo><mn>5</mn><mo>,</mo><mn>6</mn><mo>}</mo></mrow></mrow></math></span>, there exists a <span><math><mi>k</mi></math></span>-regular homogeneously traceable nonhamiltonian graph of order <span><math><mrow><mi>p</mi><mrow><mo>(</mo><mi>k</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow><mo>+</mo><mi>q</mi></mrow></math></span>.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"379 ","pages":"Pages 500-508"},"PeriodicalIF":1.0000,"publicationDate":"2025-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166218X25004998","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

A graph is called homogeneously traceable if every vertex is an endpoint of a Hamilton path. In 1979 Chartrand, Gould and Kapoor proved that for every integer n9, there exists a homogeneously traceable nonhamiltonian graph of order n. The graphs they constructed are irregular. Thus it is natural to consider the existence problem of regular homogeneously traceable nonhamiltonian graphs. In 2022 Hu and Zhan proved that for every even integer n10, there exists a cubic homogeneously traceable nonhamiltonian graph of order n, and for every integer n18, there exists a 4-regular homogeneously traceable nonhamiltonian graph of order n. They also posed the problem: Given an integer k4, determine the integers n such that there exists a k-regular homogeneously traceable nonhamiltonian graph of order n. We prove two results: (1) For every odd integer k5, integer p6 and integer q{0,2,4,6}, there exists a k-regular homogeneously traceable nonhamiltonian graph of order p(k1)+q; (2) for every even integer k6, integer p6 and integer q{0,1,2,3,4,5,6}, there exists a k-regular homogeneously traceable nonhamiltonian graph of order p(k1)+q.
正则齐次可追踪非哈密顿图的构造
如果一个图的每个顶点都是哈密顿路径的一个端点,那么这个图就是齐次可追踪的。1979年Chartrand, Gould和Kapoor证明了对于每一个整数n≥9,存在一个n阶的齐次可追踪非哈密顿图。他们构造的图是不规则的。因此,考虑正则齐次可迹非哈密顿图的存在性问题是很自然的。2022年,Hu和Zhan证明了对于每一个偶数n≥10,存在一个n阶的三次齐次可追踪非哈密顿图,对于每一个整数n≥18,存在一个n阶的4阶齐次可追踪非哈密顿图。他们还提出了一个问题:给定一个整数k≥4,确定整数n使得存在一个k阶齐次可追踪非哈密顿图。我们证明了两个结果:(1)对于每一个奇数k≥5,整数p≥6,整数q∈{0,2,4,6},存在一个p(k−1)+q阶的k正则齐次可追踪非哈密顿图;(2)对于每一个偶数k≥6,整数p≥6,整数q∈{0,1,2,3,4,5,6},存在一个p(k−1)+q阶的k正则齐次可追踪非哈密顿图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Discrete Applied Mathematics
Discrete Applied Mathematics 数学-应用数学
CiteScore
2.30
自引率
9.10%
发文量
422
审稿时长
4.5 months
期刊介绍: The aim of Discrete Applied Mathematics is to bring together research papers in different areas of algorithmic and applicable discrete mathematics as well as applications of combinatorial mathematics to informatics and various areas of science and technology. Contributions presented to the journal can be research papers, short notes, surveys, and possibly research problems. The "Communications" section will be devoted to the fastest possible publication of recent research results that are checked and recommended for publication by a member of the Editorial Board. The journal will also publish a limited number of book announcements as well as proceedings of conferences. These proceedings will be fully refereed and adhere to the normal standards of the journal. Potential authors are advised to view the journal and the open calls-for-papers of special issues before submitting their manuscripts. Only high-quality, original work that is within the scope of the journal or the targeted special issue will be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信