枚举多项式的行列式表示

IF 1 3区 数学 Q3 MATHEMATICS, APPLIED
Shi-Mei Ma , Hong Bian , Jun-Ying Liu , Jean Yeh , Yeong-Nan Yeh
{"title":"枚举多项式的行列式表示","authors":"Shi-Mei Ma ,&nbsp;Hong Bian ,&nbsp;Jun-Ying Liu ,&nbsp;Jean Yeh ,&nbsp;Yeong-Nan Yeh","doi":"10.1016/j.dam.2025.09.025","DOIUrl":null,"url":null,"abstract":"<div><div>Based on a determinantal formula for the higher derivative of a quotient of two functions, we first present the determinantal expressions of Eulerian polynomials and André polynomials. In particular, we discover that the Euler number (number of alternating permutations) can be expressed as a lower Hessenberg determinant. We then investigate the determinantal representations of the up-down run polynomials and the types <span><math><mi>A</mi></math></span> and <span><math><mi>B</mi></math></span> alternating run polynomials. As applications, we deduce several new recurrence relations. And then, we provide two determinantal representations for the alternating run polynomials of dual Stirling permutations. In particular, we discover a close connection between the alternating run polynomials of dual Stirling permutations and the type <span><math><mi>B</mi></math></span> Eulerian polynomials.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"378 ","pages":"Pages 682-702"},"PeriodicalIF":1.0000,"publicationDate":"2025-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Determinantal representations of enumerative polynomials\",\"authors\":\"Shi-Mei Ma ,&nbsp;Hong Bian ,&nbsp;Jun-Ying Liu ,&nbsp;Jean Yeh ,&nbsp;Yeong-Nan Yeh\",\"doi\":\"10.1016/j.dam.2025.09.025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Based on a determinantal formula for the higher derivative of a quotient of two functions, we first present the determinantal expressions of Eulerian polynomials and André polynomials. In particular, we discover that the Euler number (number of alternating permutations) can be expressed as a lower Hessenberg determinant. We then investigate the determinantal representations of the up-down run polynomials and the types <span><math><mi>A</mi></math></span> and <span><math><mi>B</mi></math></span> alternating run polynomials. As applications, we deduce several new recurrence relations. And then, we provide two determinantal representations for the alternating run polynomials of dual Stirling permutations. In particular, we discover a close connection between the alternating run polynomials of dual Stirling permutations and the type <span><math><mi>B</mi></math></span> Eulerian polynomials.</div></div>\",\"PeriodicalId\":50573,\"journal\":{\"name\":\"Discrete Applied Mathematics\",\"volume\":\"378 \",\"pages\":\"Pages 682-702\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0166218X25005530\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166218X25005530","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

基于两个函数商的高阶导数的行列式,首先给出了欧拉多项式和安德鲁多项式的行列式表达式。特别地,我们发现欧拉数(交替排列的数目)可以表示为下海森伯格行列式。然后,我们研究了上下运行多项式的行列式表示和类型A和B交替运行多项式。作为应用,我们推导了几个新的递归关系。然后,我们给出了对偶斯特林排列的交替运行多项式的两种行列式表示。特别地,我们发现了对偶斯特林排列的交替运行多项式与B型欧拉多项式之间的密切联系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Determinantal representations of enumerative polynomials
Based on a determinantal formula for the higher derivative of a quotient of two functions, we first present the determinantal expressions of Eulerian polynomials and André polynomials. In particular, we discover that the Euler number (number of alternating permutations) can be expressed as a lower Hessenberg determinant. We then investigate the determinantal representations of the up-down run polynomials and the types A and B alternating run polynomials. As applications, we deduce several new recurrence relations. And then, we provide two determinantal representations for the alternating run polynomials of dual Stirling permutations. In particular, we discover a close connection between the alternating run polynomials of dual Stirling permutations and the type B Eulerian polynomials.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Discrete Applied Mathematics
Discrete Applied Mathematics 数学-应用数学
CiteScore
2.30
自引率
9.10%
发文量
422
审稿时长
4.5 months
期刊介绍: The aim of Discrete Applied Mathematics is to bring together research papers in different areas of algorithmic and applicable discrete mathematics as well as applications of combinatorial mathematics to informatics and various areas of science and technology. Contributions presented to the journal can be research papers, short notes, surveys, and possibly research problems. The "Communications" section will be devoted to the fastest possible publication of recent research results that are checked and recommended for publication by a member of the Editorial Board. The journal will also publish a limited number of book announcements as well as proceedings of conferences. These proceedings will be fully refereed and adhere to the normal standards of the journal. Potential authors are advised to view the journal and the open calls-for-papers of special issues before submitting their manuscripts. Only high-quality, original work that is within the scope of the journal or the targeted special issue will be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信