{"title":"The thickness of a graph with constraint on girth","authors":"Dengju Ma","doi":"10.1016/j.dam.2025.07.025","DOIUrl":"10.1016/j.dam.2025.07.025","url":null,"abstract":"<div><div>The thickness of a graph <span><math><mi>G</mi></math></span>, denoted by <span><math><mrow><mi>θ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>, is the minimum integer <span><math><mi>t</mi></math></span> such that <span><math><mi>G</mi></math></span> can be decomposed into <span><math><mi>t</mi></math></span> planar subgraphs. In 1991, Dean et al. conjectured that the thickness of a graph <span><math><mi>G</mi></math></span> with <span><math><mi>m</mi></math></span> edges is at most <span><math><mrow><msqrt><mrow><mi>m</mi><mo>/</mo><mn>16</mn></mrow></msqrt><mo>+</mo><mi>O</mi><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow></mrow></math></span>. In this paper we show that the conjecture holds if the girth <span><math><mi>g</mi></math></span> of <span><math><mi>G</mi></math></span> is at least five, and that <span><math><mrow><mi>θ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo><</mo><mn>1</mn><mo>+</mo><mroot><mrow><mi>m</mi><mo>/</mo><mn>2</mn></mrow><mrow><mi>s</mi></mrow></mroot></mrow></math></span> if <span><math><mrow><mi>g</mi><mo>≥</mo><mn>6</mn></mrow></math></span>, where <span><math><mrow><mi>s</mi><mo>=</mo><mrow><mo>⌊</mo><mi>g</mi><mo>/</mo><mn>2</mn><mo>⌋</mo></mrow></mrow></math></span>. If the girth of <span><math><mi>G</mi></math></span> is not restricted, then we prove that <span><math><mrow><mi>θ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≤</mo><mrow><mo>⌊</mo><mn>5</mn><mo>/</mo><mn>6</mn><mo>+</mo><msqrt><mrow><mn>2</mn><mi>m</mi><mo>/</mo><mn>9</mn><mo>−</mo><mn>23</mn><mo>/</mo><mn>36</mn></mrow></msqrt><mo>⌋</mo></mrow></mrow></math></span> where <span><math><mrow><mi>m</mi><mo>≥</mo><mn>3</mn></mrow></math></span>, which improves the known bound for the thickness of graphs. If <span><math><mi>G</mi></math></span> is a connected nonplanar graph with girth <span><math><mrow><mi>g</mi><mo>≥</mo><mn>6</mn></mrow></math></span> which is 2-cell embedded in the orientable surface <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span> (the nonorientable surface <span><math><msub><mrow><mi>N</mi></mrow><mrow><mi>h</mi></mrow></msub></math></span>, respectively), then <span><math><mrow><mi>θ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≤</mo><mn>3</mn><mo>+</mo><mrow><mo>⌊</mo><mroot><mrow><mn>2</mn><mi>k</mi><mo>−</mo><mn>1</mn></mrow><mrow><mi>s</mi></mrow></mroot><mo>⌋</mo></mrow></mrow></math></span>\u0000 (<span><math><mrow><mi>θ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≤</mo><mn>3</mn><mo>+</mo><mrow><mo>⌊</mo><mroot><mrow><mi>h</mi><mo>−</mo><mn>1</mn></mrow><mrow><mi>s</mi></mrow></mroot><mo>⌋</mo></mrow></mrow></math></span>,respectively). Clearly, if <span><math><mrow><mi>k</mi><mrow><mo>(</mo><mo>≥</mo><mn>1</mn><mo>)</mo></mrow></mrow></math></span> or <span><math><mrow><mi>h</mi><mrow><mo>(</mo><mo>≥</mo><mn>2</mn><mo>)</mo></mrow></mrow></math></span> is fixed, then the aforementioned bounds get closer and closer to 4, as the girt","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"376 ","pages":"Pages 374-383"},"PeriodicalIF":1.0,"publicationDate":"2025-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144704422","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Intersection of cycles and paths in k-connected graphs","authors":"Haidong Wu","doi":"10.1016/j.dam.2025.07.013","DOIUrl":"10.1016/j.dam.2025.07.013","url":null,"abstract":"<div><div>McGuinness (2005) shows that if <span><math><mi>G</mi></math></span> is a <span><math><mi>k</mi></math></span>-connected graph <span><math><mrow><mo>(</mo><mi>k</mi><mo>≥</mo><mn>2</mn><mo>)</mo></mrow></math></span> having circumference <span><math><mrow><mi>c</mi><mo>=</mo><mi>c</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≥</mo><mn>2</mn><mi>k</mi></mrow></math></span>, then for a pair of cycles <span><math><mi>C</mi></math></span> and <span><math><mi>D</mi></math></span> of <span><math><mi>G</mi></math></span> such that <span><math><mrow><mrow><mo>|</mo><mi>V</mi><mrow><mo>(</mo><mi>C</mi><mo>)</mo></mrow><mo>|</mo></mrow><mo>+</mo><mrow><mo>|</mo><mi>V</mi><mrow><mo>(</mo><mi>D</mi><mo>)</mo></mrow><mo>|</mo></mrow><mo>≥</mo><mn>2</mn><mi>c</mi><mo>−</mo><mn>2</mn><mi>k</mi><mo>+</mo><mn>3</mn></mrow></math></span>, it must be true that <span><math><mi>C</mi></math></span> and <span><math><mi>D</mi></math></span> intersect in at least two common vertices. Using this result, McGuinness proves that for any <span><math><mi>k</mi></math></span>-connected graph <span><math><mi>G</mi></math></span> where <span><math><mrow><mi>k</mi><mo>≥</mo><mn>2</mn></mrow></math></span> and having circumference <span><math><mrow><mi>c</mi><mo>≥</mo><mn>2</mn><mi>k</mi></mrow></math></span>, there is a bond <span><math><mi>B</mi></math></span> which intersects every cycle of length <span><math><mrow><mi>c</mi><mo>−</mo><mi>k</mi><mo>+</mo><mn>2</mn></mrow></math></span> or greater.</div><div>In this paper, we study the following general questions: will two long cycles or two paths intersect at a large number of vertices in a highly connected graph? We give positive answers to both questions and extend McGuinness’ result. Let <span><math><mrow><mi>c</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> denote the circumference of a graph <span><math><mi>G</mi></math></span>. We prove the following results.</div><div>(1) Let <span><math><mi>G</mi></math></span> be a <span><math><mi>k</mi></math></span>-connected graph for <span><math><mrow><mi>s</mi><mo>≥</mo><mn>3</mn></mrow></math></span> and <span><math><mrow><mi>k</mi><mo>≥</mo><mn>13</mn><mo>.</mo><mn>9413</mn><msup><mrow><mi>s</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></math></span>. Suppose <span><math><mi>C</mi></math></span> and <span><math><mi>D</mi></math></span> are cycles of <span><math><mi>G</mi></math></span> such that <span><math><mrow><mrow><mo>|</mo><mi>V</mi><mrow><mo>(</mo><mi>C</mi><mo>)</mo></mrow><mo>|</mo></mrow><mo>+</mo><mrow><mo>|</mo><mi>V</mi><mrow><mo>(</mo><mi>D</mi><mo>)</mo></mrow><mo>|</mo></mrow><mo>≥</mo><mn>2</mn><mi>c</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>−</mo><mfrac><mrow><mi>c</mi><msqrt><mrow><mi>k</mi></mrow></msqrt></mrow><mrow><mi>s</mi></mrow></mfrac><mo>+</mo><mn>12</mn></mrow></math></span> where <span><math><mrow><mi>c</mi><mo>=</mo><mn>2</mn><msqrt><mrow><mfrac><mrow><mn>13</mn></mrow><mrow><mn>7</mn></mrow></mfrac>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"378 ","pages":"Pages 226-233"},"PeriodicalIF":1.0,"publicationDate":"2025-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144703913","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Characterization of graphs with orientable total domination number equal to |V|−1","authors":"Zoltán L. Blázsik , Leila Vivien Nagy","doi":"10.1016/j.dam.2025.07.021","DOIUrl":"10.1016/j.dam.2025.07.021","url":null,"abstract":"<div><div>In a directed graph <span><math><mi>D</mi></math></span>, a vertex subset <span><math><mrow><mi>S</mi><mo>⊆</mo><mi>V</mi></mrow></math></span> is a total dominating set if every vertex of <span><math><mi>D</mi></math></span> has an in-neighbor from <span><math><mi>S</mi></math></span>. A total dominating set exists if and only if every vertex has at least one in-neighbor. We call the orientation of such directed graphs valid. The total domination number of <span><math><mi>D</mi></math></span>, denoted by <span><math><mrow><msub><mrow><mi>γ</mi></mrow><mrow><mi>t</mi></mrow></msub><mrow><mo>(</mo><mi>D</mi><mo>)</mo></mrow></mrow></math></span>, is the size of the smallest total dominating set of <span><math><mi>D</mi></math></span>. For an undirected graph <span><math><mi>G</mi></math></span>, we investigate the upper (or lower) orientable total domination number of <span><math><mi>G</mi></math></span>, denoted by <span><math><mrow><msub><mrow><mi>DOM</mi></mrow><mrow><mi>t</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> (or <span><math><mrow><msub><mrow><mi>dom</mi></mrow><mrow><mi>t</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>), that is the maximum (or minimum) of the total domination numbers over all valid orientations of <span><math><mi>G</mi></math></span>. We characterize those graphs for which <span><math><mrow><msub><mrow><mi>DOM</mi></mrow><mrow><mi>t</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>=</mo><mrow><mo>|</mo><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>|</mo></mrow><mo>−</mo><mn>1</mn></mrow></math></span>, and consequently we show that there exist infinite families of graphs for which <span><math><mrow><msub><mrow><mi>DOM</mi></mrow><mrow><mi>t</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>=</mo><mrow><mo>|</mo><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>|</mo></mrow><mo>−</mo><mn>1</mn></mrow></math></span>, meanwhile <span><math><mrow><msub><mrow><mi>dom</mi></mrow><mrow><mi>t</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>=</mo><mn>3</mn></mrow></math></span> that maximizes both <span><math><mrow><msub><mrow><mi>DOM</mi></mrow><mrow><mi>t</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>−</mo><msub><mrow><mi>dom</mi></mrow><mrow><mi>t</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mfrac><mrow><msub><mrow><mi>DOM</mi></mrow><mrow><mi>t</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow><mrow><msub><mrow><mi>dom</mi></mrow><mrow><mi>t</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></mfrac></math></span>.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"378 ","pages":"Pages 234-243"},"PeriodicalIF":1.0,"publicationDate":"2025-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144703912","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On the independence polynomial and threshold of an antiregular k-hypergraph","authors":"Erchuan Zhang","doi":"10.1016/j.dam.2025.07.017","DOIUrl":"10.1016/j.dam.2025.07.017","url":null,"abstract":"<div><div>Given an integer <span><math><mrow><mi>k</mi><mo>≥</mo><mn>3</mn></mrow></math></span> and initial <span><math><mrow><mi>k</mi><mo>−</mo><mn>1</mn></mrow></math></span> isolated vertices, an <em>antiregular</em> <span><math><mi>k</mi></math></span><em>-hypergraph</em> is constructed by alternatively adding an isolated vertex (connected to no other vertices) or a dominating vertex (connected to every other <span><math><mrow><mi>k</mi><mo>−</mo><mn>1</mn></mrow></math></span> vertices). Let <span><math><msub><mrow><mi>a</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> be the number of independent sets of cardinality <span><math><mi>i</mi></math></span> in a hypergraph <span><math><mi>H</mi></math></span>, then the <em>independence polynomial</em> of <span><math><mi>H</mi></math></span> is defined as <span><math><mrow><mi>I</mi><mrow><mo>(</mo><mi>H</mi><mo>;</mo><mi>x</mi><mo>)</mo></mrow><mo>=</mo><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>0</mn></mrow><mrow><mi>m</mi></mrow></msubsup><msub><mrow><mi>a</mi></mrow><mrow><mi>i</mi></mrow></msub><msup><mrow><mi>x</mi></mrow><mrow><mi>i</mi></mrow></msup></mrow></math></span>, where <span><math><mi>m</mi></math></span> is the size of a maximum independent set. The main purpose of the present paper is to generalize some results of independence polynomials of antiregular graphs to the case of antiregular <span><math><mi>k</mi></math></span>-hypergraphs. In particular, we derive (semi-)closed formulas for the independence polynomials of antiregular <span><math><mi>k</mi></math></span>-hypergraphs and prove their log-concavity. Furthermore, we show that antiregular <span><math><mi>k</mi></math></span>-hypergraphs are <span><math><mrow><mi>T</mi><mn>2</mn></mrow></math></span><em>-threshold</em>, which means there exist a labeling <span><math><mi>c</mi></math></span> of the vertex set and a threshold <span><math><mi>τ</mi></math></span> such that for any vertex subset <span><math><mi>S</mi></math></span> of cardinality <span><math><mi>k</mi></math></span>, <span><math><mrow><msub><mrow><mo>∑</mo></mrow><mrow><mi>i</mi><mo>∈</mo><mi>S</mi></mrow></msub><mi>c</mi><mrow><mo>(</mo><mi>i</mi><mo>)</mo></mrow><mo>></mo><mi>τ</mi></mrow></math></span> if and only if <span><math><mi>S</mi></math></span> is a hyperedge.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"378 ","pages":"Pages 244-258"},"PeriodicalIF":1.0,"publicationDate":"2025-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144703916","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Characterizing and computing in linear time mutual-visibility parameters in distance-hereditary graphs","authors":"Serafino Cicerone, Gabriele Di Stefano","doi":"10.1016/j.dam.2025.07.026","DOIUrl":"10.1016/j.dam.2025.07.026","url":null,"abstract":"<div><div>The mutual-visibility problem in a graph <span><math><mi>G</mi></math></span> asks for the cardinality of a largest set of vertices <span><math><mrow><mi>X</mi><mo>⊆</mo><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> so that for any two vertices <span><math><mrow><mi>x</mi><mo>,</mo><mi>y</mi><mo>∈</mo><mi>X</mi></mrow></math></span> there is a shortest <span><math><mrow><mi>x</mi><mo>,</mo><mi>y</mi></mrow></math></span>-path whose internal vertices are all not in <span><math><mi>X</mi></math></span>. Variations of this problem are known, based on the extension of the visibility property of vertices that are in and/or outside <span><math><mi>X</mi></math></span>. It is known that solving the mutual-visibility problem in all its variations is NP-complete, whereas it has been shown that there are exact formulas for special graph classes like paths, cycles, blocks, cographs, and for the Cartesian product of some simple graphs like paths, cliques and cycles.</div><div>In this paper, we study the (variations of) mutual-visibility problem in the context of distance-hereditary graphs. In particular, we introduce the direct canonical decomposition of a graph as a tool for defining useful structural properties of the graphs studied. Then, we show that such properties allow us to devise a linear-time algorithm for solving all the variants of the mutual-visibility problem for distance-hereditary graphs. In turn, this allowed us to show that a recently posed conjecture about the total mutual-visibility number of distance-hereditary graphs holds.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"376 ","pages":"Pages 359-373"},"PeriodicalIF":1.0,"publicationDate":"2025-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144702915","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Minimum embedded-link-cut split k-ary n-cubes","authors":"Yuxing Yang, Kaiyue Meng","doi":"10.1016/j.dam.2025.07.031","DOIUrl":"10.1016/j.dam.2025.07.031","url":null,"abstract":"<div><div>Given two integers <span><math><mi>n</mi></math></span> and <span><math><mi>t</mi></math></span> with <span><math><mrow><mn>0</mn><mo>≤</mo><mi>t</mi><mo><</mo><mi>n</mi></mrow></math></span>, a <span><math><mi>t</mi></math></span>-<em>embedded-link-cut</em> of an <span><math><mi>n</mi></math></span>-dimensional recursive interconnection network <span><math><msub><mrow><mi>N</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> is a set of links whose removal separates <span><math><msub><mrow><mi>N</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> and each node still lies in a <span><math><mi>t</mi></math></span>-dimensional subnetwork <span><math><msub><mrow><mi>N</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span> in the resulting network. A <em>minimum embedded-link-cut split</em> <span><math><msub><mrow><mi>N</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> is the resultant network obtained by removing all the links in a minimum embedded-link-cut from <span><math><msub><mrow><mi>N</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>. And <span><math><msub><mrow><mi>N</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> is said to be <em>super</em> <span><math><mi>t</mi></math></span><em>-embedded link connected</em> (super-<span><math><msub><mrow><mi>η</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span>) if each minimum embedded-link-cut split <span><math><msub><mrow><mi>N</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> has exactly two components, one of which is isomorphic to <span><math><msub><mrow><mi>N</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span>. The <span><math><mi>k</mi></math></span>-ary <span><math><mi>n</mi></math></span>-cube <span><math><msubsup><mrow><mi>Q</mi></mrow><mrow><mi>n</mi></mrow><mrow><mi>k</mi></mrow></msubsup></math></span> is a leading interconnection network for the multiprocessor system, which takes the hypercube (i.e., the binary <span><math><mi>n</mi></math></span>-cube) as a special case. Let <span><math><mi>ν</mi></math></span> be the number of nodes in <span><math><msubsup><mrow><mi>Q</mi></mrow><mrow><mi>n</mi></mrow><mrow><mi>k</mi></mrow></msubsup></math></span>. In this paper, we provide an <span><math><mrow><mi>O</mi><mrow><mo>(</mo><mi>ν</mi><mi>⋅</mi><mrow><mo>(</mo><mi>n</mi><mo>−</mo><mi>t</mi><mo>)</mo></mrow><mo>)</mo></mrow></mrow></math></span> algorithm to obtain a minimum <span><math><mi>t</mi></math></span>-embedded-link-cut for <span><math><mi>k</mi></math></span>-ary <span><math><mi>n</mi></math></span>-cubes with <span><math><mrow><mi>k</mi><mo>=</mo><mn>2</mn></mrow></math></span> or odd <span><math><mrow><mi>k</mi><mo>≥</mo><mn>3</mn></mrow></math></span>, and prove that both the binary <span><math><mi>n</mi></math></span>-cube with <span><math><mrow><mi>n</mi><mo>≥</mo><mn>3</mn></mrow></math></span> and the ternary <span><math><mi>n</mi></math></span>-cube with <span><math><mrow><mi>n</mi><mo>≥</mo><mn>1</mn></mrow></math></sp","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"378 ","pages":"Pages 210-215"},"PeriodicalIF":1.0,"publicationDate":"2025-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144703914","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wenjuan Zhou , Rong-Xia Hao , Rong Luo , Yilun Luo
{"title":"An infinite family of normal 5-edge colorable superpositioned snarks","authors":"Wenjuan Zhou , Rong-Xia Hao , Rong Luo , Yilun Luo","doi":"10.1016/j.dam.2025.07.032","DOIUrl":"10.1016/j.dam.2025.07.032","url":null,"abstract":"<div><div>Let <span><math><mi>G</mi></math></span> be a cubic graph. For a proper edge coloring <span><math><mi>π</mi></math></span> of <span><math><mi>G</mi></math></span>, an edge <span><math><mrow><mi>e</mi><mo>∈</mo><mi>E</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> is normal if the number of colors of all edges incident to endvertices of <span><math><mi>e</mi></math></span> is 3 or 5. A normal <span><math><mi>k</mi></math></span>-edge coloring of <span><math><mi>G</mi></math></span> is a proper edge coloring with <span><math><mi>k</mi></math></span> colors such that each edge of <span><math><mi>G</mi></math></span> is normal. The normal chromatic index of <span><math><mi>G</mi></math></span>, denoted by <span><math><mrow><msubsup><mrow><mi>χ</mi></mrow><mrow><mi>N</mi></mrow><mrow><mo>′</mo></mrow></msubsup><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>, is the smallest integer <span><math><mi>k</mi></math></span> such that <span><math><mi>G</mi></math></span> admits a normal <span><math><mi>k</mi></math></span>-edge coloring. Jaeger conjectured that <span><math><mrow><msubsup><mrow><mi>χ</mi></mrow><mrow><mi>N</mi></mrow><mrow><mo>′</mo></mrow></msubsup><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≤</mo><mn>5</mn></mrow></math></span> for every bridgeless cubic graph <span><math><mi>G</mi></math></span>, and he also proved that this conjecture is equivalent to the Petersen coloring conjecture. The normal 5-edge coloring conjecture has been verified for some families of snarks, such as, generalized Blanuša snarks, Goldberg snarks, flower snarks and Loupekhine snarks. Sedlar et al. proved that this conjecture holds for two families of superpositioned snarks. In this paper, we present a construction of superpositioned snarks whose normal chromatic indices equal to 5, which implies the normal 5-edge coloring conjecture for large families of snarks.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"378 ","pages":"Pages 259-269"},"PeriodicalIF":1.0,"publicationDate":"2025-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144703915","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Signless Laplacian energy and spectral radius of a graph","authors":"Yuanyuan Chen , Shuting Liu , Zhiwen Wang","doi":"10.1016/j.dam.2025.07.015","DOIUrl":"10.1016/j.dam.2025.07.015","url":null,"abstract":"<div><div>For a graph <span><math><mi>G</mi></math></span>, the signless Laplacian energy is defined as <span><math><mrow><msup><mrow><mi>E</mi></mrow><mrow><mi>Q</mi></mrow></msup><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>=</mo><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>n</mi></mrow></msubsup><mfenced><mrow><msub><mrow><mi>q</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>−</mo><mfrac><mrow><mn>2</mn><mi>m</mi></mrow><mrow><mi>n</mi></mrow></mfrac></mrow></mfenced></mrow></math></span>, where <span><math><mi>n</mi></math></span> and <span><math><mi>m</mi></math></span> are the order and the size, and <span><math><msub><mrow><mi>q</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> is the <span><math><mi>i</mi></math></span>th largest signless Laplacian eigenvalue of <span><math><mi>G</mi></math></span>, respectively. In this paper, we establish a sharp lower bound of the signless Laplacian spectral radius of a graph <span><math><mi>G</mi></math></span> in terms of the degree and the average 2-degree, generalizing a well-known lower bound that <span><math><mrow><msub><mrow><mi>q</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>≥</mo><mi>Δ</mi><mo>+</mo><mn>1</mn></mrow></math></span>. As applications, we give sharp lower and upper bounds of its signless Laplacian energy for a connected graph and a bipartite graph. All extremal graphs involved are characterized.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"378 ","pages":"Pages 216-225"},"PeriodicalIF":1.0,"publicationDate":"2025-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144703910","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The size and the spectral radius of a saturated non-covered graph","authors":"Zeyuan Wu , Hongzhang Chen , Jianxi Li","doi":"10.1016/j.dam.2025.07.029","DOIUrl":"10.1016/j.dam.2025.07.029","url":null,"abstract":"<div><div>A graph <span><math><mrow><mi>G</mi><mo>=</mo><mrow><mo>(</mo><mi>V</mi><mo>,</mo><mi>E</mi><mo>)</mo></mrow></mrow></math></span> is a matching-covered graph if for every <span><math><mrow><mi>e</mi><mo>∈</mo><mi>E</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>, there exists at least one perfect matching <span><math><mi>M</mi></math></span> of <span><math><mi>G</mi></math></span> such that <span><math><mrow><mi>e</mi><mo>∈</mo><mi>M</mi></mrow></math></span>. A graph <span><math><mi>G</mi></math></span> of even order is a saturated non-covered graph if for any <span><math><mrow><mi>e</mi><mo>∈</mo><mi>E</mi><mrow><mo>(</mo><mover><mrow><mi>G</mi></mrow><mo>¯</mo></mover><mo>)</mo></mrow></mrow></math></span>, <span><math><mrow><mi>G</mi><mo>+</mo><mi>e</mi></mrow></math></span> is a matching-covered graph but <span><math><mi>G</mi></math></span> is not. Very recently, Zhou, Cao and Yan (2025) provided a structural characterization on the saturated non-covered graphs. In this paper, we further study the saturated non-covered graph from its size and eigenvalues. The graphs with the maximum size and the maximum spectral radius among all saturated non-covered graphs are identified, respectively, as well as an upper bound on the Laplacian eigenratio of a saturated non-covered graph is also established.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"377 ","pages":"Pages 343-349"},"PeriodicalIF":1.0,"publicationDate":"2025-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144687271","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Li Zhang , Hajo Broersma , You Lu , Shenggui Zhang
{"title":"An adjacency lemma on signed edge colorings with an application to planar graphs","authors":"Li Zhang , Hajo Broersma , You Lu , Shenggui Zhang","doi":"10.1016/j.dam.2025.07.024","DOIUrl":"10.1016/j.dam.2025.07.024","url":null,"abstract":"<div><div>In the study of edge colorings of graphs, critical graphs are of particular importance. One classical result concerning the structure of critical graphs is known as Vizing’s Adjacency Lemma. This lemma provides useful structural information about the neighborhood of a vertex in a critical graph. Zhang introduced an adjacency lemma dealing with the second neighborhood of a vertex in a critical graph. Both of these adjacency lemmas are useful tools for proving classification results on edge colorings. In this paper, we present an adjacency lemma on critical signed graphs with even maximum degree. This new adjacency lemma can be interpreted as a local extension of Zhang’s Adjacency Lemma. As an application of the new lemma, we show that a signed planar graph with maximum degree <span><math><mrow><mi>Δ</mi><mo>≥</mo><mn>6</mn></mrow></math></span> in which every 6-cycle has at most one chord is <span><math><mi>Δ</mi></math></span>-edge-colorable.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"377 ","pages":"Pages 335-342"},"PeriodicalIF":1.0,"publicationDate":"2025-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144687270","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}