{"title":"极值四边形和星形嵌入的无符号拉普拉斯谱条件","authors":"Zhe Wei, Zhenzhen Lou, Changxiang He","doi":"10.1016/j.dam.2025.09.016","DOIUrl":null,"url":null,"abstract":"<div><div>The signless Laplacian spectral radius has emerged as a crucial spectral parameter in network science. This paper establishes new extremal results in spectral graph theory by investigating the signless Laplacian spectral radius (<span><math><mi>Q</mi></math></span>-index) of graphs with forbidden subgraphs. We present a <span><math><mi>Q</mi></math></span>-spectral analog of classical Nosal-type theorems, providing sharp conditions that guarantee the existence of either a 4-cycle or a large star <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>m</mi><mo>−</mo><mi>k</mi></mrow></msub></math></span> in such graphs. The main theorem states that for integers <span><math><mrow><mi>k</mi><mo>≥</mo><mn>0</mn></mrow></math></span> and graphs <span><math><mi>G</mi></math></span> with <span><math><mi>m</mi></math></span> edges where <span><math><mrow><mi>m</mi><mo>≥</mo><mo>max</mo><mrow><mo>{</mo><mn>7</mn><mi>k</mi><mo>+</mo><mn>31</mn><mo>,</mo><msup><mrow><mi>k</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><mn>8</mn><mrow><mo>(</mo><mi>k</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow><mo>}</mo></mrow></mrow></math></span>, if <span><math><mrow><mi>q</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≥</mo><mi>q</mi><mrow><mo>(</mo><msubsup><mrow><mi>S</mi></mrow><mrow><mi>m</mi><mo>,</mo><mi>k</mi><mo>+</mo><mn>1</mn></mrow><mrow><mo>+</mo></mrow></msubsup><mo>)</mo></mrow></mrow></math></span>, then <span><math><mi>G</mi></math></span> must contain a 4-cycle or <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>m</mi><mo>−</mo><mi>k</mi></mrow></msub></math></span>, unless <span><math><mi>G</mi></math></span> is isomorphic to the extremal graph <span><math><msubsup><mrow><mi>S</mi></mrow><mrow><mi>m</mi><mo>,</mo><mi>k</mi><mo>+</mo><mn>1</mn></mrow><mrow><mo>+</mo></mrow></msubsup></math></span> formed by adding <span><math><mrow><mi>k</mi><mo>+</mo><mn>1</mn></mrow></math></span> independent edges to the star <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>m</mi><mo>−</mo><mi>k</mi><mo>−</mo><mn>1</mn></mrow></msub></math></span>. This result refines related previous work on star embeddings by Wang and Guo (2024), and completes the <span><math><mi>Q</mi></math></span>-spectral counterpart to Wang’s adjacency spectral theorem for 4-cycle containment (Wang, 2022). Our analysis reveals new insights into how signless Laplacian eigenvalues encode graph structure, with tight bounds demonstrated through explicit extremal graph constructions and asymptotic analysis.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"379 ","pages":"Pages 461-468"},"PeriodicalIF":1.0000,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Signless Laplacian spectral conditions for extremal quadrilateral and star embeddings\",\"authors\":\"Zhe Wei, Zhenzhen Lou, Changxiang He\",\"doi\":\"10.1016/j.dam.2025.09.016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The signless Laplacian spectral radius has emerged as a crucial spectral parameter in network science. This paper establishes new extremal results in spectral graph theory by investigating the signless Laplacian spectral radius (<span><math><mi>Q</mi></math></span>-index) of graphs with forbidden subgraphs. We present a <span><math><mi>Q</mi></math></span>-spectral analog of classical Nosal-type theorems, providing sharp conditions that guarantee the existence of either a 4-cycle or a large star <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>m</mi><mo>−</mo><mi>k</mi></mrow></msub></math></span> in such graphs. The main theorem states that for integers <span><math><mrow><mi>k</mi><mo>≥</mo><mn>0</mn></mrow></math></span> and graphs <span><math><mi>G</mi></math></span> with <span><math><mi>m</mi></math></span> edges where <span><math><mrow><mi>m</mi><mo>≥</mo><mo>max</mo><mrow><mo>{</mo><mn>7</mn><mi>k</mi><mo>+</mo><mn>31</mn><mo>,</mo><msup><mrow><mi>k</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><mn>8</mn><mrow><mo>(</mo><mi>k</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow><mo>}</mo></mrow></mrow></math></span>, if <span><math><mrow><mi>q</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≥</mo><mi>q</mi><mrow><mo>(</mo><msubsup><mrow><mi>S</mi></mrow><mrow><mi>m</mi><mo>,</mo><mi>k</mi><mo>+</mo><mn>1</mn></mrow><mrow><mo>+</mo></mrow></msubsup><mo>)</mo></mrow></mrow></math></span>, then <span><math><mi>G</mi></math></span> must contain a 4-cycle or <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>m</mi><mo>−</mo><mi>k</mi></mrow></msub></math></span>, unless <span><math><mi>G</mi></math></span> is isomorphic to the extremal graph <span><math><msubsup><mrow><mi>S</mi></mrow><mrow><mi>m</mi><mo>,</mo><mi>k</mi><mo>+</mo><mn>1</mn></mrow><mrow><mo>+</mo></mrow></msubsup></math></span> formed by adding <span><math><mrow><mi>k</mi><mo>+</mo><mn>1</mn></mrow></math></span> independent edges to the star <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>m</mi><mo>−</mo><mi>k</mi><mo>−</mo><mn>1</mn></mrow></msub></math></span>. This result refines related previous work on star embeddings by Wang and Guo (2024), and completes the <span><math><mi>Q</mi></math></span>-spectral counterpart to Wang’s adjacency spectral theorem for 4-cycle containment (Wang, 2022). Our analysis reveals new insights into how signless Laplacian eigenvalues encode graph structure, with tight bounds demonstrated through explicit extremal graph constructions and asymptotic analysis.</div></div>\",\"PeriodicalId\":50573,\"journal\":{\"name\":\"Discrete Applied Mathematics\",\"volume\":\"379 \",\"pages\":\"Pages 461-468\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0166218X25005426\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166218X25005426","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Signless Laplacian spectral conditions for extremal quadrilateral and star embeddings
The signless Laplacian spectral radius has emerged as a crucial spectral parameter in network science. This paper establishes new extremal results in spectral graph theory by investigating the signless Laplacian spectral radius (-index) of graphs with forbidden subgraphs. We present a -spectral analog of classical Nosal-type theorems, providing sharp conditions that guarantee the existence of either a 4-cycle or a large star in such graphs. The main theorem states that for integers and graphs with edges where , if , then must contain a 4-cycle or , unless is isomorphic to the extremal graph formed by adding independent edges to the star . This result refines related previous work on star embeddings by Wang and Guo (2024), and completes the -spectral counterpart to Wang’s adjacency spectral theorem for 4-cycle containment (Wang, 2022). Our analysis reveals new insights into how signless Laplacian eigenvalues encode graph structure, with tight bounds demonstrated through explicit extremal graph constructions and asymptotic analysis.
期刊介绍:
The aim of Discrete Applied Mathematics is to bring together research papers in different areas of algorithmic and applicable discrete mathematics as well as applications of combinatorial mathematics to informatics and various areas of science and technology. Contributions presented to the journal can be research papers, short notes, surveys, and possibly research problems. The "Communications" section will be devoted to the fastest possible publication of recent research results that are checked and recommended for publication by a member of the Editorial Board. The journal will also publish a limited number of book announcements as well as proceedings of conferences. These proceedings will be fully refereed and adhere to the normal standards of the journal.
Potential authors are advised to view the journal and the open calls-for-papers of special issues before submitting their manuscripts. Only high-quality, original work that is within the scope of the journal or the targeted special issue will be considered.