Discrete Applied Mathematics最新文献

筛选
英文 中文
Degree sequences for k-regulable ribbon realizations k-可调色带实现的度序列
IF 1 3区 数学
Discrete Applied Mathematics Pub Date : 2025-06-11 DOI: 10.1016/j.dam.2025.05.044
Xia Guo , Jiyong Chen , Xian’an Jin
{"title":"Degree sequences for k-regulable ribbon realizations","authors":"Xia Guo ,&nbsp;Jiyong Chen ,&nbsp;Xian’an Jin","doi":"10.1016/j.dam.2025.05.044","DOIUrl":"10.1016/j.dam.2025.05.044","url":null,"abstract":"<div><div>The motivation question as to which ribbon graphs have a 4-regular checkerboard colorable twual is posed by Ellis-Monaghan and Moffatt. The ribbon graph <span><math><mi>G</mi></math></span> is a realization of the sequence <span><math><mi>D</mi></math></span> if its degree sequence is <span><math><mi>D</mi></math></span>. Furthermore, we refer to <span><math><mi>G</mi></math></span> as a <span><math><mi>k</mi></math></span>-regulable realization of <span><math><mi>D</mi></math></span> if the realization <span><math><mi>G</mi></math></span> of <span><math><mi>D</mi></math></span> has a <span><math><mi>k</mi></math></span>-regular partial dual. Since any Eulerian ribbon graph has a checkerboard colorable partial Petrial, we attempt to distinguish the ribbon graphs with <span><math><mi>k</mi></math></span>-regular partial duals directly from their degree sequences. Although the result is frustrating, some sequences lacking <span><math><mi>k</mi></math></span>-regulable realization are exposed. Moreover, we construct a family of <span><math><mi>k</mi></math></span>-regulable realizations for all sequences whose elements are greater than 1, except for the sequence <span><math><mrow><mo>(</mo><mn>2</mn><mo>,</mo><mo>…</mo><mo>,</mo><mn>2</mn><mo>,</mo><mn>3</mn><mo>,</mo><mo>…</mo><mo>,</mo><mn>3</mn><mo>,</mo><mn>5</mn><mo>)</mo></mrow></math></span> when <span><math><mrow><mi>k</mi><mo>=</mo><mn>3</mn></mrow></math></span>, where the number of 2s and 3s are <span><math><mrow><mn>3</mn><msub><mrow><mi>j</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>−</mo><mn>1</mn></mrow></math></span> and <span><math><mrow><mn>2</mn><msub><mrow><mi>j</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>−</mo><mn>1</mn></mrow></math></span>, respectively, <span><math><mrow><msub><mrow><mi>j</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>j</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>&gt;</mo><mn>0</mn></mrow></math></span>.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"375 ","pages":"Pages 50-65"},"PeriodicalIF":1.0,"publicationDate":"2025-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144262442","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A note on prime distance graphs with chromatic number 3 or 4 色数为3或4的素数距离图的注释
IF 1 3区 数学
Discrete Applied Mathematics Pub Date : 2025-06-10 DOI: 10.1016/j.dam.2025.05.030
J. George Barnabas , Yegnanarayanan Venkataraman , Bryan Freyberg
{"title":"A note on prime distance graphs with chromatic number 3 or 4","authors":"J. George Barnabas ,&nbsp;Yegnanarayanan Venkataraman ,&nbsp;Bryan Freyberg","doi":"10.1016/j.dam.2025.05.030","DOIUrl":"10.1016/j.dam.2025.05.030","url":null,"abstract":"<div><div>Prime distance graphs (PDGs) are divided into four classes depending on whether their chromatic number is 1, 2, 3 or 4. It is still an open problem to completely characterize the family of PDGs with chromatic number 3 or 4. In this brief note we give necessary and sufficient conditions for fans and wheels to be PDGs. We also show (1) <span><math><mi>n</mi></math></span> edge-disjoint copies of a PDG may be chained together to form a PDG, and (2) the Cartesian product of a PDG with a path is a PDG.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"375 ","pages":"Pages 38-44"},"PeriodicalIF":1.0,"publicationDate":"2025-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144239379","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Performance of efficient variants of the 2-Opt heuristic for the traveling salesperson problem 旅行销售人员问题的2-Opt启发式有效变体的性能
IF 1 3区 数学
Discrete Applied Mathematics Pub Date : 2025-06-07 DOI: 10.1016/j.dam.2025.05.034
Bodo Manthey, Jesse van Rhijn
{"title":"Performance of efficient variants of the 2-Opt heuristic for the traveling salesperson problem","authors":"Bodo Manthey,&nbsp;Jesse van Rhijn","doi":"10.1016/j.dam.2025.05.034","DOIUrl":"10.1016/j.dam.2025.05.034","url":null,"abstract":"<div><div>We analyze variants of the 2-opt local search heuristic for the Traveling Salesperson Problem (TSP) with guaranteed polynomial running-time. First we consider X-opt, a heuristic that removes intersecting pairs of edges from two-dimensional Euclidean instances. We show that the longest X-optimal tour may be approximately <span><math><mrow><mi>n</mi><mo>/</mo><mn>2</mn></mrow></math></span> times longer than the optimal tour in the worst case. Moreover, even when the instance consists of <span><math><mi>n</mi></math></span> points placed uniformly at random in the unit square, the longest tour is <span><math><mrow><mi>Ω</mi><mrow><mo>(</mo><msqrt><mrow><mi>n</mi></mrow></msqrt><mo>)</mo></mrow></mrow></math></span> times longer than the optimal tour. Next, we propose a new heuristic, which we call Y-opt, that is defined for all TSP instances, not just Euclidean ones. Y-opt has essentially the same approximation guarantees as the well-studied 2-opt. We furthermore evaluate the approximation performance of both X-opt and Y-opt numerically on random instances and compare them to 2-opt. While Y-opt behaves as predicted, we find that X-opt appears to have a constant approximation ratio on these instances in practice.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"375 ","pages":"Pages 7-16"},"PeriodicalIF":1.0,"publicationDate":"2025-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144229564","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Closures and heavy pairs for hamiltonicity 哈密性的闭包和重对
IF 1 3区 数学
Discrete Applied Mathematics Pub Date : 2025-06-07 DOI: 10.1016/j.dam.2025.05.028
Wangyi Shang , Hajo Broersma , Shenggui Zhang , Binlong Li
{"title":"Closures and heavy pairs for hamiltonicity","authors":"Wangyi Shang ,&nbsp;Hajo Broersma ,&nbsp;Shenggui Zhang ,&nbsp;Binlong Li","doi":"10.1016/j.dam.2025.05.028","DOIUrl":"10.1016/j.dam.2025.05.028","url":null,"abstract":"<div><div>We say that a graph <span><math><mi>G</mi></math></span> on <span><math><mi>n</mi></math></span> vertices is <span><math><mrow><mo>{</mo><mi>H</mi><mo>,</mo><mi>F</mi><mo>}</mo></mrow></math></span>-<span><math><mi>o</mi></math></span>-heavy if every induced subgraph of <span><math><mi>G</mi></math></span> isomorphic to <span><math><mi>H</mi></math></span> or <span><math><mi>F</mi></math></span> contains two nonadjacent vertices with degree sum at least <span><math><mi>n</mi></math></span>. Generalizing earlier sufficient forbidden subgraph conditions for hamiltonicity, in 2012, Li, Ryjáček, Wang and Zhang determined all connected graphs <span><math><mi>R</mi></math></span> and <span><math><mi>S</mi></math></span> of order at least 3 other than <span><math><msub><mrow><mi>P</mi></mrow><mrow><mn>3</mn></mrow></msub></math></span> such that every 2-connected <span><math><mrow><mo>{</mo><mi>R</mi><mo>,</mo><mi>S</mi><mo>}</mo></mrow></math></span>-<span><math><mi>o</mi></math></span>-heavy graph is hamiltonian. In particular, they showed that, up to symmetry, <span><math><mi>R</mi></math></span> must be a claw and <span><math><mrow><mi>S</mi><mo>∈</mo><mrow><mo>{</mo><msub><mrow><mi>P</mi></mrow><mrow><mn>4</mn></mrow></msub><mo>,</mo><msub><mrow><mi>P</mi></mrow><mrow><mn>5</mn></mrow></msub><mo>,</mo><msub><mrow><mi>C</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>,</mo><msub><mrow><mi>Z</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>Z</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mi>B</mi><mo>,</mo><mi>N</mi><mo>,</mo><mi>W</mi><mo>}</mo></mrow></mrow></math></span>. In 2008, Čada extended Ryjáček’s closure concept for claw-free graphs by introducing what we call the <span><math><mi>c</mi></math></span>-closure for claw-<span><math><mi>o</mi></math></span>-heavy graphs. We apply it here to characterize the structure of the <span><math><mi>c</mi></math></span>-closure of 2-connected <span><math><mrow><mo>{</mo><mi>R</mi><mo>,</mo><mi>S</mi><mo>}</mo></mrow></math></span>-<span><math><mi>o</mi></math></span>-heavy graphs, where <span><math><mi>R</mi></math></span> and <span><math><mi>S</mi></math></span> are as above. Our main results extend or generalize several earlier results on hamiltonicity involving forbidden or <span><math><mi>o</mi></math></span>-heavy subgraphs.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"375 ","pages":"Pages 25-37"},"PeriodicalIF":1.0,"publicationDate":"2025-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144229539","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Determining some graph joins by the signless Laplacian spectrum 用无符号拉普拉斯谱确定图的连接
IF 1 3区 数学
Discrete Applied Mathematics Pub Date : 2025-06-07 DOI: 10.1016/j.dam.2025.05.035
Jiachang Ye , Jianguo Qian , Zoran Stanić
{"title":"Determining some graph joins by the signless Laplacian spectrum","authors":"Jiachang Ye ,&nbsp;Jianguo Qian ,&nbsp;Zoran Stanić","doi":"10.1016/j.dam.2025.05.035","DOIUrl":"10.1016/j.dam.2025.05.035","url":null,"abstract":"&lt;div&gt;&lt;div&gt;A graph is determined by its signless Laplacian spectrum if there is no other non-isomorphic graph sharing the same signless Laplacian spectrum. Let &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;C&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;l&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt;, &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;P&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;l&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt;, &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;K&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;l&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; and &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;K&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;s&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;l&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mi&gt;s&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; be the cycle, the path, the complete graph and the complete bipartite graph with &lt;span&gt;&lt;math&gt;&lt;mi&gt;l&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; vertices, respectively. We prove that &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;≅&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;K&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;∨&lt;/mo&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;C&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;l&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;∪&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;C&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;l&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;∪&lt;/mo&gt;&lt;mo&gt;⋯&lt;/mo&gt;&lt;mo&gt;∪&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;C&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;l&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;∪&lt;/mo&gt;&lt;mi&gt;s&lt;/mi&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;K&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; with &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;s&lt;/mi&gt;&lt;mo&gt;≥&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;mo&gt;≥&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;≥&lt;/mo&gt;&lt;mn&gt;22&lt;/mn&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;, is determined by the signless Laplacian spectrum if and only if either &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;s&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; or &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;s&lt;/mi&gt;&lt;mo&gt;≥&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; and &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;l&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;≠&lt;/mo&gt;&lt;mn&gt;3&lt;/mn&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; holds for &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;≤&lt;/mo&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;mo&gt;≤&lt;/mo&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;, where &lt;span&gt;&lt;math&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; is the order of &lt;span&gt;&lt;math&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;, and &lt;span&gt;&lt;math&gt;&lt;mo&gt;∪&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; and &lt;span&gt;&lt;math&gt;&lt;mo&gt;∨&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; stand for the disjoint union and the join of two graphs, respectively. Moreover, for &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;s&lt;/mi&gt;&lt;mo&gt;≥&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; and &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;l&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mn&gt;3&lt;/mn&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;, &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;K&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;∨&lt;/mo&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;K&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mn&gt;3&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;∪&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;C&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;l&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;∪&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;C&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;l&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;∪&lt;/mo&gt;&lt;mo&gt;⋯&lt;/mo&gt;&lt;mo&gt;∪&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;C&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;l&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;∪&lt;/mo&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;s&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;1","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"375 ","pages":"Pages 17-24"},"PeriodicalIF":1.0,"publicationDate":"2025-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144229538","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On maximum induced forests of the balanced bipartite graphs 平衡二部图的最大诱导林
IF 1 3区 数学
Discrete Applied Mathematics Pub Date : 2025-06-05 DOI: 10.1016/j.dam.2025.05.029
Ali Ghalavand, Xueliang Li
{"title":"On maximum induced forests of the balanced bipartite graphs","authors":"Ali Ghalavand,&nbsp;Xueliang Li","doi":"10.1016/j.dam.2025.05.029","DOIUrl":"10.1016/j.dam.2025.05.029","url":null,"abstract":"<div><div>Let <span><math><mi>B</mi></math></span> be a balanced bipartite graph with two parts, <span><math><msub><mrow><mi>V</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>V</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>, each containing <span><math><mi>n</mi></math></span> vertices, resulting in a total of <span><math><mrow><mn>2</mn><mi>n</mi></mrow></math></span> vertices. Recently, Wang and Wu conjectured that if the minimum degree of <span><math><mi>B</mi></math></span>, denoted as <span><math><mrow><mi>δ</mi><mrow><mo>(</mo><mi>B</mi><mo>)</mo></mrow></mrow></math></span>, is greater than or equal to <span><math><mrow><mfrac><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>+</mo><mn>1</mn></mrow></math></span>, then the largest order of an induced forest in <span><math><mi>B</mi></math></span> is equal to <span><math><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></math></span>. In this paper, we prove this conjecture and show that the condition on the minimum degree cannot be relaxed in general terms. Furthermore, we determine that if <span><math><mrow><mi>δ</mi><mrow><mo>(</mo><mi>B</mi><mo>)</mo></mrow><mo>≥</mo><mfrac><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>+</mo><mn>1</mn></mrow></math></span>, then any subset <span><math><mi>S</mi></math></span> of vertices in <span><math><mi>B</mi></math></span> that induces a forest of size <span><math><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></math></span> will satisfy the conditions <span><math><mrow><mo>min</mo><mrow><mo>{</mo><mrow><mo>|</mo><mi>S</mi><mo>∩</mo><msub><mrow><mi>V</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>|</mo></mrow><mo>,</mo><mrow><mo>|</mo><mi>S</mi><mo>∩</mo><msub><mrow><mi>V</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>|</mo></mrow><mo>}</mo></mrow><mo>=</mo><mn>1</mn></mrow></math></span> when <span><math><mi>n</mi></math></span> is odd, and <span><math><mrow><mo>min</mo><mrow><mo>{</mo><mrow><mo>|</mo><mi>S</mi><mo>∩</mo><msub><mrow><mi>V</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>|</mo></mrow><mo>,</mo><mrow><mo>|</mo><mi>S</mi><mo>∩</mo><msub><mrow><mi>V</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>|</mo></mrow><mo>}</mo></mrow><mo>∈</mo><mrow><mo>{</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mfrac><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>}</mo></mrow></mrow></math></span> when <span><math><mi>n</mi></math></span> is even. Additionally, we identify infinitely many balanced bipartite graphs that meet these conditions.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"375 ","pages":"Pages 1-6"},"PeriodicalIF":1.0,"publicationDate":"2025-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144222226","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
2-distance coloring of planar graphs without 4, 6-cycles 无4,6环的平面图的2距离着色
IF 1 3区 数学
Discrete Applied Mathematics Pub Date : 2025-05-22 DOI: 10.1016/j.dam.2025.05.023
Yuehua Bu , Zhimin Bao , Hongguo Zhu
{"title":"2-distance coloring of planar graphs without 4, 6-cycles","authors":"Yuehua Bu ,&nbsp;Zhimin Bao ,&nbsp;Hongguo Zhu","doi":"10.1016/j.dam.2025.05.023","DOIUrl":"10.1016/j.dam.2025.05.023","url":null,"abstract":"<div><div>For a graph <span><math><mi>G</mi></math></span> and a positive integer <span><math><mi>k</mi></math></span>, a 2-distance <span><math><mi>k</mi></math></span>-coloring of <span><math><mi>G</mi></math></span> is a proper <span><math><mi>k</mi></math></span>-coloring such that any two vertices at distance 2 cannot share the same color. In this paper, we prove that every planar graph without 4, 6-cycles and <span><math><mrow><mi>Δ</mi><mo>≥</mo><mn>20</mn></mrow></math></span> admits a 2-distance <span><math><mrow><mo>(</mo><mi>Δ</mi><mo>+</mo><mn>3</mn><mo>)</mo></mrow></math></span>-coloring.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"374 ","pages":"Pages 135-143"},"PeriodicalIF":1.0,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144116418","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Efficient methods of constructing universal cycles for k-permutations 构造k-置换泛环的有效方法
IF 1 3区 数学
Discrete Applied Mathematics Pub Date : 2025-05-21 DOI: 10.1016/j.dam.2025.05.020
Zuling Chang , Lingyu Diao , Shujie Wang
{"title":"Efficient methods of constructing universal cycles for k-permutations","authors":"Zuling Chang ,&nbsp;Lingyu Diao ,&nbsp;Shujie Wang","doi":"10.1016/j.dam.2025.05.020","DOIUrl":"10.1016/j.dam.2025.05.020","url":null,"abstract":"<div><div>We present two efficient methods of constructing universal cycles for the set of all <span><math><mi>k</mi></math></span>-permutations of the <span><math><mi>n</mi></math></span>-set <span><math><mrow><mo>{</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>n</mi><mo>}</mo></mrow></math></span> for <span><math><mrow><mi>n</mi><mo>&gt;</mo><mi>k</mi><mo>≥</mo><mn>3</mn></mrow></math></span>. These two methods generate universal cycles for <span><math><mi>k</mi></math></span>-permutations from pure cycling registers with feedback function <span><math><mrow><mi>f</mi><mrow><mo>(</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mi>k</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>)</mo></mrow><mo>=</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow></math></span>, using the cycle joining method. Here we design two classes of successor rules that build upon a framework proposed by Gabric et al. (2020), each of which produces <span><math><mrow><mi>n</mi><mo>−</mo><mi>k</mi></mrow></math></span> shift inequivalent universal cycles for <span><math><mi>k</mi></math></span>-permutations. Each universal cycle for <span><math><mi>k</mi></math></span>-permutations can be generated in <span><math><mrow><mi>O</mi><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></mrow></math></span> time per symbol using <span><math><mrow><mi>O</mi><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></mrow></math></span> space.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"374 ","pages":"Pages 120-134"},"PeriodicalIF":1.0,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144107445","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cops and attacking robbers with cycle constraints 警察和骑自行车攻击劫匪
IF 1 3区 数学
Discrete Applied Mathematics Pub Date : 2025-05-21 DOI: 10.1016/j.dam.2025.05.019
Alexander Clow , Melissa A. Huggan , M.E. Messinger
{"title":"Cops and attacking robbers with cycle constraints","authors":"Alexander Clow ,&nbsp;Melissa A. Huggan ,&nbsp;M.E. Messinger","doi":"10.1016/j.dam.2025.05.019","DOIUrl":"10.1016/j.dam.2025.05.019","url":null,"abstract":"<div><div>This paper considers the Cops and Attacking Robbers game, a variant of Cops and Robbers, where the robber is empowered to attack a cop in the same way a cop can capture the robber. In a graph <span><math><mi>G</mi></math></span>, the number of cops required to capture a robber in the Cops and Attacking Robbers game is denoted by <span><math><mrow><mo>cc</mo><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>. We give a sufficient condition for a triangle-free graph to have attacking cop number at most 2 and we characterise when outerplanar graphs have attacking cop number 2. We also prove that all bipartite planar graphs <span><math><mi>G</mi></math></span> have <span><math><mrow><mo>cc</mo><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≤</mo><mn>4</mn></mrow></math></span> and show this is tight by constructing a bipartite planar graph <span><math><mi>G</mi></math></span> with <span><math><mrow><mo>cc</mo><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>=</mo><mn>4</mn></mrow></math></span>. Finally we construct 17 non-isomorphic graphs <span><math><mi>H</mi></math></span> of order 58 with <span><math><mrow><mo>cc</mo><mrow><mo>(</mo><mi>H</mi><mo>)</mo></mrow><mo>=</mo><mn>6</mn></mrow></math></span> and <span><math><mrow><mo>c</mo><mrow><mo>(</mo><mi>H</mi><mo>)</mo></mrow><mo>=</mo><mn>3</mn></mrow></math></span>. This provides the first example of a graph <span><math><mi>H</mi></math></span> with <span><math><mrow><mo>cc</mo><mrow><mo>(</mo><mi>H</mi><mo>)</mo></mrow><mo>−</mo><mo>c</mo><mrow><mo>(</mo><mi>H</mi><mo>)</mo></mrow><mo>≥</mo><mn>3</mn></mrow></math></span>, extending work by Bonato et al. (2014). We conclude with a list of conjectures and open problems.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"373 ","pages":"Pages 327-342"},"PeriodicalIF":1.0,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144098556","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fixed-parameter algorithms for cardinality-constrained graph partitioning problems on sparse graphs 稀疏图上基数约束图划分问题的固定参数算法
IF 1 3区 数学
Discrete Applied Mathematics Pub Date : 2025-05-21 DOI: 10.1016/j.dam.2025.05.012
Suguru Yamada , Tesshu Hanaka
{"title":"Fixed-parameter algorithms for cardinality-constrained graph partitioning problems on sparse graphs","authors":"Suguru Yamada ,&nbsp;Tesshu Hanaka","doi":"10.1016/j.dam.2025.05.012","DOIUrl":"10.1016/j.dam.2025.05.012","url":null,"abstract":"&lt;div&gt;&lt;div&gt;For an undirected and edge-weighted graph &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;V&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;E&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; and a vertex subset &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;S&lt;/mi&gt;&lt;mo&gt;⊆&lt;/mo&gt;&lt;mi&gt;V&lt;/mi&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;, we define a function &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;φ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;S&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;≔&lt;/mo&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mi&gt;α&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mi&gt;⋅&lt;/mi&gt;&lt;mi&gt;w&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;S&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mi&gt;α&lt;/mi&gt;&lt;mi&gt;⋅&lt;/mi&gt;&lt;mi&gt;w&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;S&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;V&lt;/mi&gt;&lt;mo&gt;∖&lt;/mo&gt;&lt;mi&gt;S&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;, where &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;α&lt;/mi&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;mrow&gt;&lt;mo&gt;[&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;]&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; is a real number, &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;w&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;S&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; is the sum of the weights of edges having two endpoints in &lt;span&gt;&lt;math&gt;&lt;mi&gt;S&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;, and &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;w&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;S&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;V&lt;/mi&gt;&lt;mo&gt;∖&lt;/mo&gt;&lt;mi&gt;S&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; is the sum of the weights of edges having one endpoint in &lt;span&gt;&lt;math&gt;&lt;mi&gt;S&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; and the other in &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;V&lt;/mi&gt;&lt;mo&gt;∖&lt;/mo&gt;&lt;mi&gt;S&lt;/mi&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;. Then, given an undirected and edge-weighted graph &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;V&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;E&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; and a positive integer &lt;span&gt;&lt;math&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;, &lt;span&gt;Max (Min)&lt;/span&gt;\u0000 &lt;span&gt;&lt;math&gt;&lt;mi&gt;α&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;-&lt;span&gt;Fixed Cardinality Graph Partitioning (Max (Min)&lt;/span&gt;\u0000 &lt;span&gt;&lt;math&gt;&lt;mi&gt;α&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;-&lt;span&gt;FCGP)&lt;/span&gt; is the problem to find a vertex subset &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;S&lt;/mi&gt;&lt;mo&gt;⊆&lt;/mo&gt;&lt;mi&gt;V&lt;/mi&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; of size &lt;span&gt;&lt;math&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; that maximizes (minimizes) &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;φ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;S&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;. In this paper, we first show that &lt;span&gt;Max&lt;/span&gt;\u0000 &lt;span&gt;&lt;math&gt;&lt;mi&gt;α&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;-&lt;span&gt;FCGP&lt;/span&gt; with &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;α&lt;/mi&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;mrow&gt;&lt;mo&gt;[&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;/&lt;/mo&gt;&lt;mn&gt;3&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;]&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; and &lt;span&gt;Min&lt;/span&gt;\u0000 &lt;span&gt;&lt;math&gt;&lt;mi&gt;α&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;-&lt;span&gt;FCGP&lt;/span&gt; with &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;α&lt;/mi&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;mrow&gt;&lt;mo&gt;[&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;/&lt;/mo&gt;&lt;mn&gt;3&lt;/mn&gt;&lt;mo&gt;]&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; can be solved in time &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;o&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;e&lt;/mi&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mi&gt;e&lt;/mi&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;O&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; where &lt;span&gt;&lt;math&gt;&lt;","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"373 ","pages":"Pages 343-354"},"PeriodicalIF":1.0,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144098557","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信