Discrete Applied Mathematics最新文献

筛选
英文 中文
Some results on (1,2)-rainbow connection number
IF 1 3区 数学
Discrete Applied Mathematics Pub Date : 2025-05-13 DOI: 10.1016/j.dam.2025.05.008
Yingbin Ma, Yuyu Zhao
{"title":"Some results on (1,2)-rainbow connection number","authors":"Yingbin Ma,&nbsp;Yuyu Zhao","doi":"10.1016/j.dam.2025.05.008","DOIUrl":"10.1016/j.dam.2025.05.008","url":null,"abstract":"<div><div>In Li et al., (2018), proved the sharp upper bound of <span><math><mrow><mi>r</mi><msub><mrow><mi>c</mi></mrow><mrow><mn>1</mn><mo>,</mo><mn>2</mn></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>+</mo><mi>r</mi><msub><mrow><mi>c</mi></mrow><mrow><mn>1</mn><mo>,</mo><mn>2</mn></mrow></msub><mrow><mo>(</mo><mover><mrow><mi>G</mi></mrow><mo>¯</mo></mover><mo>)</mo></mrow></mrow></math></span> and left a problem of the sharp lower bound of <span><math><mrow><mi>r</mi><msub><mrow><mi>c</mi></mrow><mrow><mn>1</mn><mo>,</mo><mn>2</mn></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>+</mo><mi>r</mi><msub><mrow><mi>c</mi></mrow><mrow><mn>1</mn><mo>,</mo><mn>2</mn></mrow></msub><mrow><mo>(</mo><mover><mrow><mi>G</mi></mrow><mo>¯</mo></mover><mo>)</mo></mrow></mrow></math></span>. In this article, we solve this problem and show some sharp examples. In Doan and Do (2023), proved that <span><math><mrow><mi>r</mi><msub><mrow><mi>c</mi></mrow><mrow><mn>1</mn><mo>,</mo><mn>2</mn></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≤</mo><mn>3</mn></mrow></math></span> for a graph <span><math><mi>G</mi></math></span> with large clique number <span><math><mrow><mi>ω</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≥</mo><mi>n</mi><mo>−</mo><mn>3</mn></mrow></math></span>. Then we completely determine the <span><math><mrow><mo>(</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>)</mo></mrow></math></span>-rainbow connection number of <span><math><mi>G</mi></math></span> with <span><math><mrow><mi>ω</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≥</mo><mi>n</mi><mo>−</mo><mn>3</mn></mrow></math></span>.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"373 ","pages":"Pages 231-238"},"PeriodicalIF":1.0,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143943127","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the unimodality of Zhang-Zhang polynomials of parallelogram chains 平行四边形链张张多项式的单模性
IF 1 3区 数学
Discrete Applied Mathematics Pub Date : 2025-05-12 DOI: 10.1016/j.dam.2025.05.007
Guanru Li , Yi Wang , Qiqi Xiao
{"title":"On the unimodality of Zhang-Zhang polynomials of parallelogram chains","authors":"Guanru Li ,&nbsp;Yi Wang ,&nbsp;Qiqi Xiao","doi":"10.1016/j.dam.2025.05.007","DOIUrl":"10.1016/j.dam.2025.05.007","url":null,"abstract":"<div><div>The Zhang-Zhang polynomial counts Clar covers of a hexagonal system and is closely related to many important topological invariants. Heping Zhang and Fuji Zhang conjectured that the Zhang-Zhang polynomial of any hexagonal system has unimodal coefficients. In this paper we show that Zhang-Zhang polynomials of the parallelogram chains have some stronger unimodality properties.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"373 ","pages":"Pages 224-230"},"PeriodicalIF":1.0,"publicationDate":"2025-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143935842","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Parameterized complexity of locally minimal defensive alliances 局部最小防御联盟的参数化复杂性
IF 1 3区 数学
Discrete Applied Mathematics Pub Date : 2025-05-11 DOI: 10.1016/j.dam.2025.05.001
Ajinkya Gaikwad, Soumen Maity, Shuvam Kant Tripathi
{"title":"Parameterized complexity of locally minimal defensive alliances","authors":"Ajinkya Gaikwad,&nbsp;Soumen Maity,&nbsp;Shuvam Kant Tripathi","doi":"10.1016/j.dam.2025.05.001","DOIUrl":"10.1016/j.dam.2025.05.001","url":null,"abstract":"<div><div>A set <span><math><mi>S</mi></math></span> of vertices of a graph is a defensive alliance if, for each element of <span><math><mi>S</mi></math></span>, the majority of its neighbours is in <span><math><mi>S</mi></math></span>. We consider the notion of local minimality in this paper. We are interested in locally minimal defensive alliance of maximum size. This problem is known to be NP-hard but its parameterized complexity remains open until now. We enhance our understanding of the problem from the viewpoint of parameterized complexity. The main results of the paper are the following: (1) <span>Locally Minimal Defensive Alliance</span> is NP-complete, even when restricted to planar graphs, (2) a randomized FPT algorithm for <span>Exact Connected Locally Minimal Defensive Alliance</span> parameterized by solution size, (3) <span>Locally Minimal Defensive Alliance</span> is fixed-parameter tractable (FPT) when parameterized by neighbourhood diversity, (4) <span>Locally Minimal Defensive Alliance</span> parameterized by treewidth is W[1]-hard and thus not FPT (unless <span><math><mrow><mtext>FPT</mtext><mo>=</mo><mtext>W[1]</mtext></mrow></math></span>), (5) <span>Locally Minimal Defensive Alliance</span> can be solved in polynomial time for graphs of bounded treewidth.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"372 ","pages":"Pages 324-340"},"PeriodicalIF":1.0,"publicationDate":"2025-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143932108","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Approximating Graphic Min-Max and Minimum Cycle/Path/Tree Cover Problems 逼近图形最小最大值和最小周期/路径/树木覆盖问题
IF 1 3区 数学
Discrete Applied Mathematics Pub Date : 2025-05-10 DOI: 10.1016/j.dam.2025.05.002
Wei Yu, Zhaohui Liu
{"title":"Approximating Graphic Min-Max and Minimum Cycle/Path/Tree Cover Problems","authors":"Wei Yu,&nbsp;Zhaohui Liu","doi":"10.1016/j.dam.2025.05.002","DOIUrl":"10.1016/j.dam.2025.05.002","url":null,"abstract":"<div><div>In this work we consider the Graphic Min-Max Cycle/Path/Tree Cover Problem and the Graphic Minimum Cycle/Path/Tree Cover Problem, some of which generalize the famous Graphic TSP. For all six problems, we obtain approximation algorithms with better ratios than the corresponding problems defined on general metrics. For the Graphic Minimum Path Cover Problem, we even show a best possible approximation ratio of 2, assuming <span><math><mrow><mi>P</mi><mo>≠</mo><mi>N</mi><mi>P</mi></mrow></math></span>.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"372 ","pages":"Pages 314-323"},"PeriodicalIF":1.0,"publicationDate":"2025-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143929494","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Structure and coloring of (P7, C5, diamond)-free graphs (P7, C5,菱形)自由图的结构与着色
IF 1 3区 数学
Discrete Applied Mathematics Pub Date : 2025-05-08 DOI: 10.1016/j.dam.2025.04.059
Ran Chen, Baogang Xu
{"title":"Structure and coloring of (P7, C5, diamond)-free graphs","authors":"Ran Chen,&nbsp;Baogang Xu","doi":"10.1016/j.dam.2025.04.059","DOIUrl":"10.1016/j.dam.2025.04.059","url":null,"abstract":"<div><div>Let <span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span> denote a path and a cycle on <span><math><mi>t</mi></math></span> vertices, respectively. A <em>diamond</em> consists of two triangles sharing exactly one edge, a <em>paw</em> is a graph obtained from a triangle by adding a pendant edge. Let <span><math><mi>H</mi></math></span> be a diamond or a paw. In this paper, we determine the structure of imperfect (<span><math><mrow><msub><mrow><mi>P</mi></mrow><mrow><mn>7</mn></mrow></msub><mo>,</mo><msub><mrow><mi>C</mi></mrow><mrow><mn>5</mn></mrow></msub><mo>,</mo><mi>H</mi></mrow></math></span>)-free graphs. As a consequence, we show that each (<span><math><mrow><msub><mrow><mi>P</mi></mrow><mrow><mn>7</mn></mrow></msub><mo>,</mo><msub><mrow><mi>C</mi></mrow><mrow><mn>5</mn></mrow></msub><mo>,</mo><mi>H</mi></mrow></math></span>)-free graph <span><math><mi>G</mi></math></span> can be polynomially colored with <span><math><mrow><mo>max</mo><mrow><mo>{</mo><mn>3</mn><mo>,</mo><mi>ω</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>}</mo></mrow></mrow></math></span> colors. We also show that each (<span><math><mrow><msub><mrow><mi>P</mi></mrow><mrow><mn>7</mn></mrow></msub><mo>,</mo><msub><mrow><mi>C</mi></mrow><mrow><mn>5</mn></mrow></msub></mrow></math></span>, bull)-free graph is perfectly divisible, where a <em>bull</em> is a graph consisting of a triangle with two disjoint pendant edges. As a consequence, <span><math><mrow><mi>χ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≤</mo><mfenced><mrow><mfrac><mrow><mi>ω</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>+</mo><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></mfenced></mrow></math></span> if <span><math><mi>G</mi></math></span> is (<span><math><mrow><msub><mrow><mi>P</mi></mrow><mrow><mn>7</mn></mrow></msub><mo>,</mo><msub><mrow><mi>C</mi></mrow><mrow><mn>5</mn></mrow></msub></mrow></math></span>, bull)-free.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"372 ","pages":"Pages 298-307"},"PeriodicalIF":1.0,"publicationDate":"2025-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143922794","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Laplacian characteristic polynomial of the path-tree of the complete graph 完备图的路径树的拉普拉斯特征多项式
IF 1 3区 数学
Discrete Applied Mathematics Pub Date : 2025-05-08 DOI: 10.1016/j.dam.2025.04.025
Jinqiu Zhou, Weigen Yan
{"title":"The Laplacian characteristic polynomial of the path-tree of the complete graph","authors":"Jinqiu Zhou,&nbsp;Weigen Yan","doi":"10.1016/j.dam.2025.04.025","DOIUrl":"10.1016/j.dam.2025.04.025","url":null,"abstract":"&lt;div&gt;&lt;div&gt;Let &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;T&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; be the path tree of the complete graph &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;K&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt;. Denote by &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; the weighted path with vertex set &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;V&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mrow&gt;&lt;mo&gt;{&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;v&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;≤&lt;/mo&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;mo&gt;≤&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;}&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;, edge set &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;E&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mrow&gt;&lt;mo&gt;{&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;v&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;v&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;≤&lt;/mo&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;mo&gt;≤&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mo&gt;}&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;, weighted function &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;w&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;v&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;v&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;mo&gt;/&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; if &lt;span&gt;&lt;math&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; is even and &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;w&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;v&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;v&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; otherwise. Guo and Chen (2024) proved that the matching polynomial of &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;T&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; can be represented by the matching polynomials of the compete graphs. In this paper, we show that the Laplacian characteristic polynomial &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;σ&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;T&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; of &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;T&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; satisfies: &lt;span&gt;&lt;span&gt;&lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;σ&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;T&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;munderover&gt;&lt;mrow&gt;&lt;mo&gt;∏&lt;/mo&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/munderover&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;b&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;/&lt;/mo&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;mo&gt;−&lt;","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"372 ","pages":"Pages 308-313"},"PeriodicalIF":1.0,"publicationDate":"2025-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143922793","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On proper conflict-free colorings of IC-planar graphs ic平面图的适当无冲突着色
IF 1 3区 数学
Discrete Applied Mathematics Pub Date : 2025-05-08 DOI: 10.1016/j.dam.2025.05.005
Yali Wu, Xin Zhang
{"title":"On proper conflict-free colorings of IC-planar graphs","authors":"Yali Wu,&nbsp;Xin Zhang","doi":"10.1016/j.dam.2025.05.005","DOIUrl":"10.1016/j.dam.2025.05.005","url":null,"abstract":"<div><div>A proper conflict-free coloring of a graph is a proper vertex coloring ensuring that for every vertex of degree at least one there exists a color that appears exactly once in its open neighborhood. An IC-planar graph is a graph that can be embedded in a plane without having any edge crossed more than once, with the condition that each vertex is linked to no more than one crossing edge. Proper conflict-free coloring has several practical applications, especially in the areas of wireless networks, frequency allocation, and scheduling problems, and IC-planarity is a powerful tool in the areas of network design, graph drawing, and visualization. This paper introduces the inaugural finding regarding the proper conflict-free coloring of IC-planar graphs, demonstrating that any such graph can be properly conflict-free colored with no more than 20 colors.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"373 ","pages":"Pages 217-223"},"PeriodicalIF":1.0,"publicationDate":"2025-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143924433","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Extremal results on the spectral radius of function-weighted adjacency matrices 函数加权邻接矩阵谱半径的极值结果
IF 1 3区 数学
Discrete Applied Mathematics Pub Date : 2025-05-07 DOI: 10.1016/j.dam.2025.04.060
Xueliang Li, Ruiling Zheng
{"title":"Extremal results on the spectral radius of function-weighted adjacency matrices","authors":"Xueliang Li,&nbsp;Ruiling Zheng","doi":"10.1016/j.dam.2025.04.060","DOIUrl":"10.1016/j.dam.2025.04.060","url":null,"abstract":"&lt;div&gt;&lt;div&gt;For a graph &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;V&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;E&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; and &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;v&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;mi&gt;V&lt;/mi&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;, denote by &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; the degree of vertex &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;v&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt;. Let &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;f&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;y&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;&gt;&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; be a &lt;span&gt;&lt;math&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;C&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt;-function in &lt;span&gt;&lt;math&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;R&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt; and be symmetric in &lt;span&gt;&lt;math&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; and &lt;span&gt;&lt;math&gt;&lt;mi&gt;y&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;. If for every &lt;span&gt;&lt;math&gt;&lt;mover&gt;&lt;mrow&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;̄&lt;/mo&gt;&lt;/mrow&gt;&lt;/mover&gt;&lt;/math&gt;&lt;/span&gt; such that &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mo&gt;{&lt;/mo&gt;&lt;mover&gt;&lt;mrow&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;̄&lt;/mo&gt;&lt;/mrow&gt;&lt;/mover&gt;&lt;mo&gt;}&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;×&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;R&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;≠&lt;/mo&gt;&lt;mo&gt;∅&lt;/mo&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;, then &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msubsup&gt;&lt;mrow&gt;&lt;mi&gt;f&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;′&lt;/mo&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mover&gt;&lt;mrow&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;̄&lt;/mo&gt;&lt;/mrow&gt;&lt;/mover&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;y&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;≥&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; (resp. &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msubsup&gt;&lt;mrow&gt;&lt;mi&gt;f&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;′&lt;/mo&gt;&lt;mo&gt;′&lt;/mo&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mover&gt;&lt;mrow&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;̄&lt;/mo&gt;&lt;/mrow&gt;&lt;/mover&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;y&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;≥&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; ) for all &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mover&gt;&lt;mrow&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;̄&lt;/mo&gt;&lt;/mrow&gt;&lt;/mover&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;y&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;R&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;, we say &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;f&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;y&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; is increasing (resp. convex) in variable &lt;span&gt;&lt;math&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;. The function-weighted adjacency matrix &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;f&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; of a graph &lt;span&gt;&lt;math&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; is a square matrix, where the &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;j&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;-entry is equal to &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;f&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;j&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; if the vertices &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"373 ","pages":"Pages 204-216"},"PeriodicalIF":1.0,"publicationDate":"2025-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143916939","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The number of dissociation sets in connected graphs 连通图中解离集的数目
IF 1 3区 数学
Discrete Applied Mathematics Pub Date : 2025-05-06 DOI: 10.1016/j.dam.2025.04.057
Bo-Jun Yuan , Ni Yang , Hong-Yan Ge , Shi-Cai Gong
{"title":"The number of dissociation sets in connected graphs","authors":"Bo-Jun Yuan ,&nbsp;Ni Yang ,&nbsp;Hong-Yan Ge ,&nbsp;Shi-Cai Gong","doi":"10.1016/j.dam.2025.04.057","DOIUrl":"10.1016/j.dam.2025.04.057","url":null,"abstract":"<div><div>Extremal problems related to the enumeration of graph substructures, such as independent sets, matchings, and induced matchings, have become a prominent area of research with the advancement of graph theory. A subset of vertices in a graph is called a dissociation set if it induces a subgraph with vertex degree at most 1, making it a natural generalization of these previously studied substructures. In this paper, we present efficient tools to strictly increase the number of dissociation sets in a connected graph. Furthermore, we establish that the maximum number of dissociation sets among all connected graphs of order <span><math><mi>n</mi></math></span> is given by <span><span><span><math><mfenced><mrow><mtable><mtr><mtd><msup><mrow><mn>2</mn></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msup><mo>+</mo><mrow><mo>(</mo><mi>n</mi><mo>+</mo><mn>3</mn><mo>)</mo></mrow><mi>⋅</mi><msup><mrow><mn>2</mn></mrow><mrow><mfrac><mrow><mi>n</mi><mo>−</mo><mn>5</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msup><mo>,</mo><mspace></mspace></mtd><mtd><mi>if</mi><mspace></mspace><mi>n</mi><mspace></mspace><mi>is</mi><mspace></mspace><mi>odd</mi><mo>;</mo></mtd></mtr><mtr><mtd><msup><mrow><mn>2</mn></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msup><mo>+</mo><mrow><mo>(</mo><mi>n</mi><mo>+</mo><mn>6</mn><mo>)</mo></mrow><mi>⋅</mi><msup><mrow><mn>2</mn></mrow><mrow><mfrac><mrow><mi>n</mi><mo>−</mo><mn>6</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msup><mo>,</mo><mspace></mspace></mtd><mtd><mi>if</mi><mspace></mspace><mi>n</mi><mspace></mspace><mi>is</mi><mspace></mspace><mi>even</mi><mo>.</mo></mtd></mtr><mtr><mtd><mspace></mspace></mtd></mtr></mtable></mrow></mfenced></math></span></span></span>Additionally, we determine the achievable upper bound on the number of dissociation sets in a tree of order <span><math><mi>n</mi></math></span> and characterize the corresponding extremal graphs as an intermediate result. Finally, we identify the unicyclic graph that is the candidate for having the second largest number of dissociation sets among all connected graphs.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"373 ","pages":"Pages 196-203"},"PeriodicalIF":1.0,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143906658","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Compositions of digraphs: a survey 有向图的组成:概览
IF 1 3区 数学
Discrete Applied Mathematics Pub Date : 2025-05-05 DOI: 10.1016/j.dam.2025.04.053
Yuefang Sun
{"title":"Compositions of digraphs: a survey","authors":"Yuefang Sun","doi":"10.1016/j.dam.2025.04.053","DOIUrl":"10.1016/j.dam.2025.04.053","url":null,"abstract":"<div><div>In this survey we overview known results and get several new results on digraph compositions which generalize several classes of digraphs, including extended semicomplete digraphs, quasi-transitive digraphs, lexicographic product digraphs and round decomposable locally semicomplete digraphs. After an introductory section, the paper is divided into six sections: connectivity and linkages, kings and kernels, paths, cycles, acyclic spanning subdigraphs, strong spanning subdigraphs. This survey also contains some conjectures and open problems for further study.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"373 ","pages":"Pages 137-153"},"PeriodicalIF":1.0,"publicationDate":"2025-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143906659","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信