Discrete Applied Mathematics最新文献

筛选
英文 中文
The phase transitions of diameters in random axis-parallel hyperrectangle intersection graphs
IF 1 3区 数学
Discrete Applied Mathematics Pub Date : 2025-02-05 DOI: 10.1016/j.dam.2025.01.044
Congsong Zhang , Yong Gao , James Nastos
{"title":"The phase transitions of diameters in random axis-parallel hyperrectangle intersection graphs","authors":"Congsong Zhang , Yong Gao , James Nastos","doi":"10.1016/j.dam.2025.01.044","DOIUrl":"10.1016/j.dam.2025.01.044","url":null,"abstract":"<div><div>We study the behaviours of diameters in two models of random axis-parallel hyperrectangle intersection graphs: <span><math><mrow><mi>G</mi><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>r</mi><mo>,</mo><mi>l</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><msub><mrow><mi>G</mi></mrow><mrow><mi>u</mi></mrow></msub><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>r</mi><mo>,</mo><mi>l</mi><mo>)</mo></mrow></mrow></math></span>. These two models use axis-parallel <span><math><mi>l</mi></math></span>-dimensional hyperrectangles to represent vertices, and vertices are adjacent if and only if their corresponding axis-parallel hyperrectangles intersect. In the model <span><math><mrow><mi>G</mi><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>r</mi><mo>,</mo><mi>l</mi><mo>)</mo></mrow></mrow></math></span>, we distribute <span><math><mi>n</mi></math></span> points within <span><math><msup><mrow><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow></mrow><mrow><mi>l</mi></mrow></msup></math></span> uniformly and independently, and each point is the centre of an axis-parallel <span><math><mi>l</mi></math></span>-dimensional hypercube with edge length <span><math><mi>r</mi></math></span>. The model <span><math><mrow><msub><mrow><mi>G</mi></mrow><mrow><mi>u</mi></mrow></msub><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>r</mi><mo>,</mo><mi>l</mi><mo>)</mo></mrow></mrow></math></span>, distributing the centres of <span><math><mi>n</mi></math></span> axis-parallel <span><math><mi>l</mi></math></span>-dimensional hyperrectangles within <span><math><msup><mrow><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow></mrow><mrow><mi>l</mi></mrow></msup></math></span> exactly as the model <span><math><mrow><mi>G</mi><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>r</mi><mo>,</mo><mi>l</mi><mo>)</mo></mrow></mrow></math></span>, assigns a length from a uniform distribution over <span><math><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mi>r</mi><mo>]</mo></mrow></math></span> to each edge of the <span><math><mi>n</mi></math></span> axis-parallel <span><math><mi>l</mi></math></span>-dimensional hyperrectangles.</div><div>We prove that in the model <span><math><mrow><mi>G</mi><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>r</mi><mo>,</mo><mi>l</mi><mo>)</mo></mrow></mrow></math></span>, there is a phase transition for the event that the diameter is at most <span><math><mrow><mi>d</mi><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></mrow></math></span> occurring at <span><math><mrow><mi>r</mi><mo>=</mo><mi>d</mi><msup><mrow><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></mrow></math></span> if <span><math><mrow><mi>n</mi><mi>⋅</mi><mi>d</mi><msup><mrow><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></mrow><mrow><mo>−</mo><mi>l</mi><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></mrow></msup><mo>≥</mo><msup><mrow><mi>n</mi></mrow><mrow><mi>ϵ</mi></mrow></msup><mo>,</mo></mrow></math></span>\u0000 where <span><math><mrow><mn>0</mn><mo><</mo><mi>ϵ</mi><","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"367 ","pages":"Pages 22-29"},"PeriodicalIF":1.0,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143225980","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bounds for boxicity of circular clique graphs and zero-divisor graphs
IF 1 3区 数学
Discrete Applied Mathematics Pub Date : 2025-02-05 DOI: 10.1016/j.dam.2025.01.038
T. Kavaskar
{"title":"Bounds for boxicity of circular clique graphs and zero-divisor graphs","authors":"T. Kavaskar","doi":"10.1016/j.dam.2025.01.038","DOIUrl":"10.1016/j.dam.2025.01.038","url":null,"abstract":"<div><div>Let <span><math><mrow><mi>b</mi><mi>o</mi><mi>x</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> be the boxicity of a graph <span><math><mi>G</mi></math></span>, <span><math><mrow><mi>G</mi><mrow><mo>[</mo><msub><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>H</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>]</mo></mrow></mrow></math></span> be the <span><math><mi>G</mi></math></span>-join graph of <span><math><mi>n</mi></math></span>-pairwise disjoint graphs <span><math><mrow><msub><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>H</mi></mrow><mrow><mi>n</mi></mrow></msub></mrow></math></span>, <span><math><msubsup><mrow><mi>G</mi></mrow><mrow><mi>k</mi></mrow><mrow><mi>d</mi></mrow></msubsup></math></span> be a circular clique graph (where <span><math><mrow><mi>k</mi><mo>≥</mo><mn>2</mn><mi>d</mi></mrow></math></span>) and <span><math><mrow><mi>Γ</mi><mrow><mo>(</mo><mi>R</mi><mo>)</mo></mrow></mrow></math></span> be the zero-divisor graph of a commutative ring <span><math><mi>R</mi></math></span> with unity. In this paper, we prove that <span><math><mrow><mi>χ</mi><mrow><mo>(</mo><msubsup><mrow><mi>G</mi></mrow><mrow><mi>k</mi></mrow><mrow><mi>d</mi></mrow></msubsup><mo>)</mo></mrow><mo>≥</mo><mi>b</mi><mi>o</mi><mi>x</mi><mrow><mo>(</mo><msubsup><mrow><mi>G</mi></mrow><mrow><mi>k</mi></mrow><mrow><mi>d</mi></mrow></msubsup><mo>)</mo></mrow></mrow></math></span>, for all <span><math><mi>k</mi></math></span> and <span><math><mi>d</mi></math></span> with <span><math><mrow><mi>k</mi><mo>≥</mo><mn>2</mn><mi>d</mi></mrow></math></span>. This generalizes the results proved by Kamibeppu (2018). Also we obtain that <span><math><mrow><mi>b</mi><mi>o</mi><mi>x</mi><mrow><mo>(</mo><mi>G</mi><mrow><mo>[</mo><msub><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>H</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>]</mo></mrow><mo>)</mo></mrow><mo>≤</mo><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>n</mi></mrow></msubsup><mi>b</mi><mi>o</mi><mi>x</mi><mrow><mo>(</mo><msub><mrow><mi>H</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>)</mo></mrow></mrow></math></span>. As a consequence of this result, we obtain a bound for boxicity of ideal-based zero-divisor graph of a finite commutative ring with unity. In particular, if <span><math><mrow><mi>R</mi><mo>≇</mo><msub><mrow><mi>Z</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>×</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></mrow></math></span> is a finite commutative non-zero reduced ring with unity, where <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></sp","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"365 ","pages":"Pages 260-269"},"PeriodicalIF":1.0,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143150139","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Near optimal colourability on (H, Kn−e)-free graphs
IF 1 3区 数学
Discrete Applied Mathematics Pub Date : 2025-02-04 DOI: 10.1016/j.dam.2025.01.042
Yiao Ju , Shenwei Huang
{"title":"Near optimal colourability on (H, Kn−e)-free graphs","authors":"Yiao Ju , Shenwei Huang","doi":"10.1016/j.dam.2025.01.042","DOIUrl":"10.1016/j.dam.2025.01.042","url":null,"abstract":"<div><div>A graph family <span><math><mi>G</mi></math></span> is <em>near optimal colourable</em> if there is a constant number <span><math><mi>c</mi></math></span>, such that every graph <span><math><mrow><mi>G</mi><mo>∈</mo><mi>G</mi></mrow></math></span> satisfies <span><math><mrow><mi>χ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≤</mo><mo>max</mo><mrow><mo>{</mo><mi>c</mi><mo>,</mo><mi>ω</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>}</mo></mrow></mrow></math></span>, where <span><math><mrow><mi>χ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><mi>ω</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> are the chromatic number and clique number of <span><math><mi>G</mi></math></span>, respectively. One may reduce the colouring problem on a near optimal colourable graph family to <span><math><mi>q</mi></math></span>-colouring problems for <span><math><mrow><mi>q</mi><mo>≤</mo><mi>c</mi><mo>−</mo><mn>1</mn></mrow></math></span>. In our previous paper [Y. Ju and S. Huang. Near optimal colourability on hereditary graph families. Theoretical Computer Science 994: 114465, 2024], we give an almost complete characterization for the near optimal colourability for (<span><math><mrow><msub><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></math></span>)-free graphs and give the open problem: “Decide whether the family of (<span><math><mrow><msub><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></math></span>)-free graphs is near optimal colourable, when <span><math><msub><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> is a forest with independence number at least 3 and <span><math><mrow><msub><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>=</mo><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>−</mo><mi>e</mi></mrow></math></span>\u0000 (<span><math><mrow><mi>n</mi><mo>≥</mo><mn>4</mn></mrow></math></span>).” In this paper, we partially solve this open problem. We prove that for every <span><math><mrow><mi>n</mi><mo>≥</mo><mn>4</mn></mrow></math></span>, the family of (<span><math><mi>H</mi></math></span>, <span><math><mrow><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>−</mo><mi>e</mi></mrow></math></span>)-free graphs is near optimal colourable if <span><math><mi>H</mi></math></span> is an induced subgraph of <span><math><msub><mrow><mi>P</mi></mrow><mrow><mn>5</mn></mrow></msub></math></span>, <span><math><mrow><msub><mrow><mi>P</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>+</mo><msub><mrow><mi>P</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></math></span> or <span><math><mrow><mi>m</mi><msub><mrow><mi>P</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><msub><mrow><mi>P</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></math></span> for any <span><math><mi>m</mi></ma","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"367 ","pages":"Pages 1-7"},"PeriodicalIF":1.0,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143168316","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Counting r×s rectangles in (Catalan) words
IF 1 3区 数学
Discrete Applied Mathematics Pub Date : 2025-02-03 DOI: 10.1016/j.dam.2025.01.031
Sela Fried , Toufik Mansour
{"title":"Counting r×s rectangles in (Catalan) words","authors":"Sela Fried ,&nbsp;Toufik Mansour","doi":"10.1016/j.dam.2025.01.031","DOIUrl":"10.1016/j.dam.2025.01.031","url":null,"abstract":"<div><div>Generalizing previous results, we introduce and study a new statistic on words, that we call rectangle capacity. For two fixed positive integers <span><math><mi>r</mi></math></span> and <span><math><mi>s</mi></math></span>, this statistic counts the number of occurrences of a rectangle of size <span><math><mrow><mi>r</mi><mo>×</mo><mi>s</mi></mrow></math></span> in the bargraph representation of a word. We find the bivariate generating function for the distribution on words of the number of <span><math><mrow><mi>r</mi><mo>×</mo><mi>s</mi></mrow></math></span> rectangles and the generating function for their total number over all words. We also obtain the analog results for Catalan words.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"365 ","pages":"Pages 247-259"},"PeriodicalIF":1.0,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143150625","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
VC-dimension and pseudo-random graphs
IF 1 3区 数学
Discrete Applied Mathematics Pub Date : 2025-02-03 DOI: 10.1016/j.dam.2025.01.030
Thang Pham , Steven Senger , Michael Tait , Nguyen Thu-Huyen
{"title":"VC-dimension and pseudo-random graphs","authors":"Thang Pham ,&nbsp;Steven Senger ,&nbsp;Michael Tait ,&nbsp;Nguyen Thu-Huyen","doi":"10.1016/j.dam.2025.01.030","DOIUrl":"10.1016/j.dam.2025.01.030","url":null,"abstract":"<div><div>Let <span><math><mi>G</mi></math></span> be a graph and <span><math><mrow><mi>U</mi><mo>⊂</mo><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> be a set of vertices. For each <span><math><mrow><mi>v</mi><mo>∈</mo><mi>U</mi></mrow></math></span>, let <span><math><mrow><msub><mrow><mi>h</mi></mrow><mrow><mi>v</mi></mrow></msub><mo>:</mo><mi>U</mi><mo>→</mo><mrow><mo>{</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>}</mo></mrow></mrow></math></span> be the function defined by <span><span><span><math><mrow><msub><mrow><mi>h</mi></mrow><mrow><mi>v</mi></mrow></msub><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow><mo>=</mo><mfenced><mrow><mtable><mtr><mtd><mi>&amp;</mi><mn>1</mn><mspace></mspace><mtext>if</mtext><mspace></mspace><mi>u</mi><mo>∼</mo><mi>v</mi><mo>,</mo><mi>u</mi><mo>∈</mo><mi>U</mi><mspace></mspace></mtd></mtr><mtr><mtd><mn>0</mn><mspace></mspace><mtext>if</mtext><mspace></mspace><mi>u</mi><mo>⁄</mo><mo>∼</mo><mi>v</mi><mo>,</mo><mi>u</mi><mo>∈</mo><mi>U</mi><mo>,</mo><mspace></mspace></mtd></mtr></mtable></mrow></mfenced></mrow></math></span></span></span>and set <span><math><mrow><mi>H</mi><mrow><mo>(</mo><mi>U</mi><mo>)</mo></mrow><mo>≔</mo><mrow><mo>{</mo><msub><mrow><mi>h</mi></mrow><mrow><mi>v</mi></mrow></msub><mo>:</mo><mi>v</mi><mo>∈</mo><mi>U</mi><mo>}</mo></mrow></mrow></math></span>. The first purpose of this paper is to study the following question: What families of graphs <span><math><mi>G</mi></math></span> and what conditions on <span><math><mi>U</mi></math></span> do we need so that the VC-dimension of <span><math><mrow><mi>H</mi><mrow><mo>(</mo><mi>U</mi><mo>)</mo></mrow></mrow></math></span> can be determined? We show that if <span><math><mi>G</mi></math></span> is a pseudo-random graph, then under some mild conditions, the VC dimension of <span><math><mrow><mi>H</mi><mrow><mo>(</mo><mi>U</mi><mo>)</mo></mrow></mrow></math></span> can be bounded from below. Specific cases of this theorem recover and improve previous results on VC-dimension of functions defined by the well-studied distance and dot-product graphs over a finite field.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"365 ","pages":"Pages 231-246"},"PeriodicalIF":1.0,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143150700","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the edge-connectivity of the square of a graph
IF 1 3区 数学
Discrete Applied Mathematics Pub Date : 2025-01-31 DOI: 10.1016/j.dam.2025.01.029
Camino Balbuena , Peter Dankelmann
{"title":"On the edge-connectivity of the square of a graph","authors":"Camino Balbuena ,&nbsp;Peter Dankelmann","doi":"10.1016/j.dam.2025.01.029","DOIUrl":"10.1016/j.dam.2025.01.029","url":null,"abstract":"&lt;div&gt;&lt;div&gt;Let &lt;span&gt;&lt;math&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; be a connected graph. The edge-connectivity of &lt;span&gt;&lt;math&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;, denoted by &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;λ&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;, is the minimum number of edges whose removal renders &lt;span&gt;&lt;math&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; disconnected. Let &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;δ&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; be the minimum degree of &lt;span&gt;&lt;math&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;. It is well-known that &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;λ&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;≤&lt;/mo&gt;&lt;mi&gt;δ&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;, and graphs for which equality holds are said to be maximally edge-connected. The square &lt;span&gt;&lt;math&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt; of &lt;span&gt;&lt;math&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; is the graph with the same vertex set as &lt;span&gt;&lt;math&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;, in which two vertices are adjacent if their distance is not more that 2.&lt;/div&gt;&lt;div&gt;In this paper we present results on the edge-connectivity of the square of a graph. We show that if the minimum degree of a connected graph &lt;span&gt;&lt;math&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; of order &lt;span&gt;&lt;math&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; is at least &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mo&gt;⌊&lt;/mo&gt;&lt;mfrac&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;4&lt;/mn&gt;&lt;/mrow&gt;&lt;/mfrac&gt;&lt;mo&gt;⌋&lt;/mo&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;, then &lt;span&gt;&lt;math&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt; is maximally edge-connected, and this result is best possible. We also give lower bounds on &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;λ&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; for the case that &lt;span&gt;&lt;math&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt; is not maximally edge-connected: We prove that &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;λ&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;≥&lt;/mo&gt;&lt;mi&gt;κ&lt;/mi&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mi&gt;κ&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;, where &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;κ&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; denotes the connectivity of &lt;span&gt;&lt;math&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;, i.e., the minimum number of vertices whose removal renders &lt;span&gt;&lt;math&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; disconnected, and this bound is sharp. We further prove that &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;λ&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;≥&lt;/mo&gt;&lt;mfrac&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/mfrac&gt;&lt;mi&gt;λ&lt;/mi&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;3&lt;/mn&gt;&lt;mo&gt;/&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mfrac&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/mfrac&gt;&lt;mi&gt;λ&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/m","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"366 ","pages":"Pages 250-256"},"PeriodicalIF":1.0,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143161757","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
General sum-connectivity index of unicyclic graphs with given maximum degree
IF 1 3区 数学
Discrete Applied Mathematics Pub Date : 2025-01-30 DOI: 10.1016/j.dam.2025.01.033
Elize Swartz, Tomáš Vetrík
{"title":"General sum-connectivity index of unicyclic graphs with given maximum degree","authors":"Elize Swartz,&nbsp;Tomáš Vetrík","doi":"10.1016/j.dam.2025.01.033","DOIUrl":"10.1016/j.dam.2025.01.033","url":null,"abstract":"<div><div>For <span><math><mrow><mi>a</mi><mo>∈</mo><mi>R</mi></mrow></math></span>, the general sum-connectivity index <span><math><msub><mrow><mi>χ</mi></mrow><mrow><mi>a</mi></mrow></msub></math></span> of a graph <span><math><mi>G</mi></math></span> is defined as <span><math><mrow><msub><mrow><mi>χ</mi></mrow><mrow><mi>a</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>=</mo><msub><mrow><mo>∑</mo></mrow><mrow><mi>u</mi><mi>v</mi><mo>∈</mo><mi>E</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></msub><msup><mrow><mrow><mo>[</mo><msub><mrow><mi>d</mi></mrow><mrow><mi>G</mi></mrow></msub><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow><mo>+</mo><msub><mrow><mi>d</mi></mrow><mrow><mi>G</mi></mrow></msub><mrow><mo>(</mo><mi>v</mi><mo>)</mo></mrow><mo>]</mo></mrow></mrow><mrow><mi>a</mi></mrow></msup></mrow></math></span>, where <span><math><mrow><mi>E</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> is the set of edges of <span><math><mi>G</mi></math></span>, and <span><math><mrow><msub><mrow><mi>d</mi></mrow><mrow><mi>G</mi></mrow></msub><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><msub><mrow><mi>d</mi></mrow><mrow><mi>G</mi></mrow></msub><mrow><mo>(</mo><mi>v</mi><mo>)</mo></mrow></mrow></math></span> are the degrees of vertices <span><math><mi>u</mi></math></span> and <span><math><mi>v</mi></math></span>, respectively. Among unicyclic graphs with given number of vertices and maximum degree, we present graphs having the largest and smallest values of <span><math><msub><mrow><mi>χ</mi></mrow><mrow><mi>a</mi></mrow></msub></math></span>, and we state cases which are still open. We also solve one of the open problems on <span><math><msub><mrow><mi>χ</mi></mrow><mrow><mi>a</mi></mrow></msub></math></span> for trees if <span><math><mrow><mn>0</mn><mo>&lt;</mo><mi>a</mi><mo>&lt;</mo><mn>1</mn></mrow></math></span>.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"366 ","pages":"Pages 238-249"},"PeriodicalIF":1.0,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143160549","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Functions that are uniquely maximized by sparse quasi-star graphs, and uniquely minimized by quasi-complete graphs
IF 1 3区 数学
Discrete Applied Mathematics Pub Date : 2025-01-30 DOI: 10.1016/j.dam.2025.01.032
Nicola Apollonio
{"title":"Functions that are uniquely maximized by sparse quasi-star graphs, and uniquely minimized by quasi-complete graphs","authors":"Nicola Apollonio","doi":"10.1016/j.dam.2025.01.032","DOIUrl":"10.1016/j.dam.2025.01.032","url":null,"abstract":"&lt;div&gt;&lt;div&gt;We show that for a certain class of convex functions &lt;span&gt;&lt;math&gt;&lt;mi&gt;f&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;, including the exponential functions &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;↦&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;e&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;λ&lt;/mi&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; with &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;λ&lt;/mi&gt;&lt;mo&gt;&gt;&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; a real number, and all the powers &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;↦&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;β&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;, &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;≥&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; and &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;β&lt;/mi&gt;&lt;mo&gt;≥&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; a real number, with a unique small exception, if &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mo&gt;…&lt;/mo&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; ranges over the degree sequences of graphs with &lt;span&gt;&lt;math&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; vertices and &lt;span&gt;&lt;math&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; edges and &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;mo&gt;≤&lt;/mo&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;, then the maximum of &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mo&gt;∑&lt;/mo&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mi&gt;f&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; is uniquely attained by the degree sequence of a quasi-star graph, namely, a graph consisting of a star plus possibly additional isolated vertices. This result significantly extends a similar result in Ismailescu and Stefanica (2002). Dually, we show that for a certain class of concave functions &lt;span&gt;&lt;math&gt;&lt;mi&gt;g&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;, including the negative exponential functions &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;↦&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;e&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mi&gt;λ&lt;/mi&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; with &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;λ&lt;/mi&gt;&lt;mo&gt;&gt;&lt;/mo&gt;&lt;mo&gt;ln&lt;/mo&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; a real number, all the powers &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;↦&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;α&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;, &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;≥&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; and &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;&lt;&lt;/mo&gt;&lt;mi&gt;α&lt;/mi&gt;&lt;mo&gt;≤&lt;/mo&gt;&lt;mfrac&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/mfrac&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; a real number, and the function &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;↦&lt;/mo&gt;&lt;mfrac&gt;&lt;mrow&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/mfrac&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; for &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;≥&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;, if &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mo&gt;…&lt;/mo&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; ranges over the degree sequences of graphs with &lt;span&gt;&lt;math&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; vertices and &lt;span&gt;&lt;math&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; edges, then the minim","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"366 ","pages":"Pages 226-237"},"PeriodicalIF":1.0,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143161752","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Coloring of (P6,dart, K4)-free graphs
IF 1 3区 数学
Discrete Applied Mathematics Pub Date : 2025-01-28 DOI: 10.1016/j.dam.2025.01.034
Xia Hong , Baogang Xu
{"title":"Coloring of (P6,dart, K4)-free graphs","authors":"Xia Hong ,&nbsp;Baogang Xu","doi":"10.1016/j.dam.2025.01.034","DOIUrl":"10.1016/j.dam.2025.01.034","url":null,"abstract":"<div><div>A hereditary class <span><math><mi>G</mi></math></span> of graphs is <span><math><mi>χ</mi></math></span>-bounded if there is a <span><math><mi>χ</mi></math></span>-binding function, say <span><math><mi>f</mi></math></span>, such that <span><math><mrow><mi>χ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≤</mo><mi>f</mi><mrow><mo>(</mo><mi>ω</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>)</mo></mrow></mrow></math></span>, for every <span><math><mrow><mi>G</mi><mo>∈</mo><mi>G</mi></mrow></math></span>, where <span><math><mrow><mi>χ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mspace></mspace><mrow><mo>(</mo><mi>ω</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>)</mo></mrow></mrow></math></span> denotes the chromatic (clique) number of <span><math><mi>G</mi></math></span>. A <em>diamond</em> is a graph obtained from <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span> by removing an edge, and a <em>dart</em> is a graph obtained from a <em>diamond</em> by adding a pendent edge to a vertex of degree 3 of the <em>diamond</em>. Gravier, Hoáng and Maffray showed that every (<span><math><msub><mrow><mi>P</mi></mrow><mrow><mn>6</mn></mrow></msub></math></span>, <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span>)-free graph is 16-colorable (Gravier et al., 2003). Brause and Gei<span><math><mi>β</mi></math></span>er showed that (<span><math><msub><mrow><mi>P</mi></mrow><mrow><mn>5</mn></mrow></msub></math></span>, <em>dart</em>)-free graphs <span><math><mi>G</mi></math></span> have a binding function <span><math><mrow><mi>Θ</mi><mrow><mo>(</mo><mfrac><mrow><msup><mrow><mi>ω</mi></mrow><mrow><mn>2</mn></mrow></msup><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow><mrow><mo>log</mo><mi>ω</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></mfrac><mo>)</mo></mrow></mrow></math></span> (Brause and Gei<span><math><mi>β</mi></math></span>er, 2021). In this paper, we show that every (<span><math><msub><mrow><mi>P</mi></mrow><mrow><mn>6</mn></mrow></msub></math></span>, <em>dart</em>, <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span>)-free graph is 7-colorable.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"365 ","pages":"Pages 223-230"},"PeriodicalIF":1.0,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143150699","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cubic and quartic net-regular strongly regular signed graphs
IF 1 3区 数学
Discrete Applied Mathematics Pub Date : 2025-01-28 DOI: 10.1016/j.dam.2025.01.026
Milica Anđelić , Tamara Koledin , Zoran Stanić
{"title":"Cubic and quartic net-regular strongly regular signed graphs","authors":"Milica Anđelić ,&nbsp;Tamara Koledin ,&nbsp;Zoran Stanić","doi":"10.1016/j.dam.2025.01.026","DOIUrl":"10.1016/j.dam.2025.01.026","url":null,"abstract":"<div><div>In this paper, we determine all connected net-regular strongly regular signed graphs with vertex degree at most four.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"366 ","pages":"Pages 216-225"},"PeriodicalIF":1.0,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143160551","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信