{"title":"Some results on (1,2)-rainbow connection number","authors":"Yingbin Ma, Yuyu Zhao","doi":"10.1016/j.dam.2025.05.008","DOIUrl":"10.1016/j.dam.2025.05.008","url":null,"abstract":"<div><div>In Li et al., (2018), proved the sharp upper bound of <span><math><mrow><mi>r</mi><msub><mrow><mi>c</mi></mrow><mrow><mn>1</mn><mo>,</mo><mn>2</mn></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>+</mo><mi>r</mi><msub><mrow><mi>c</mi></mrow><mrow><mn>1</mn><mo>,</mo><mn>2</mn></mrow></msub><mrow><mo>(</mo><mover><mrow><mi>G</mi></mrow><mo>¯</mo></mover><mo>)</mo></mrow></mrow></math></span> and left a problem of the sharp lower bound of <span><math><mrow><mi>r</mi><msub><mrow><mi>c</mi></mrow><mrow><mn>1</mn><mo>,</mo><mn>2</mn></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>+</mo><mi>r</mi><msub><mrow><mi>c</mi></mrow><mrow><mn>1</mn><mo>,</mo><mn>2</mn></mrow></msub><mrow><mo>(</mo><mover><mrow><mi>G</mi></mrow><mo>¯</mo></mover><mo>)</mo></mrow></mrow></math></span>. In this article, we solve this problem and show some sharp examples. In Doan and Do (2023), proved that <span><math><mrow><mi>r</mi><msub><mrow><mi>c</mi></mrow><mrow><mn>1</mn><mo>,</mo><mn>2</mn></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≤</mo><mn>3</mn></mrow></math></span> for a graph <span><math><mi>G</mi></math></span> with large clique number <span><math><mrow><mi>ω</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≥</mo><mi>n</mi><mo>−</mo><mn>3</mn></mrow></math></span>. Then we completely determine the <span><math><mrow><mo>(</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>)</mo></mrow></math></span>-rainbow connection number of <span><math><mi>G</mi></math></span> with <span><math><mrow><mi>ω</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≥</mo><mi>n</mi><mo>−</mo><mn>3</mn></mrow></math></span>.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"373 ","pages":"Pages 231-238"},"PeriodicalIF":1.0,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143943127","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On the unimodality of Zhang-Zhang polynomials of parallelogram chains","authors":"Guanru Li , Yi Wang , Qiqi Xiao","doi":"10.1016/j.dam.2025.05.007","DOIUrl":"10.1016/j.dam.2025.05.007","url":null,"abstract":"<div><div>The Zhang-Zhang polynomial counts Clar covers of a hexagonal system and is closely related to many important topological invariants. Heping Zhang and Fuji Zhang conjectured that the Zhang-Zhang polynomial of any hexagonal system has unimodal coefficients. In this paper we show that Zhang-Zhang polynomials of the parallelogram chains have some stronger unimodality properties.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"373 ","pages":"Pages 224-230"},"PeriodicalIF":1.0,"publicationDate":"2025-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143935842","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Parameterized complexity of locally minimal defensive alliances","authors":"Ajinkya Gaikwad, Soumen Maity, Shuvam Kant Tripathi","doi":"10.1016/j.dam.2025.05.001","DOIUrl":"10.1016/j.dam.2025.05.001","url":null,"abstract":"<div><div>A set <span><math><mi>S</mi></math></span> of vertices of a graph is a defensive alliance if, for each element of <span><math><mi>S</mi></math></span>, the majority of its neighbours is in <span><math><mi>S</mi></math></span>. We consider the notion of local minimality in this paper. We are interested in locally minimal defensive alliance of maximum size. This problem is known to be NP-hard but its parameterized complexity remains open until now. We enhance our understanding of the problem from the viewpoint of parameterized complexity. The main results of the paper are the following: (1) <span>Locally Minimal Defensive Alliance</span> is NP-complete, even when restricted to planar graphs, (2) a randomized FPT algorithm for <span>Exact Connected Locally Minimal Defensive Alliance</span> parameterized by solution size, (3) <span>Locally Minimal Defensive Alliance</span> is fixed-parameter tractable (FPT) when parameterized by neighbourhood diversity, (4) <span>Locally Minimal Defensive Alliance</span> parameterized by treewidth is W[1]-hard and thus not FPT (unless <span><math><mrow><mtext>FPT</mtext><mo>=</mo><mtext>W[1]</mtext></mrow></math></span>), (5) <span>Locally Minimal Defensive Alliance</span> can be solved in polynomial time for graphs of bounded treewidth.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"372 ","pages":"Pages 324-340"},"PeriodicalIF":1.0,"publicationDate":"2025-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143932108","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Approximating Graphic Min-Max and Minimum Cycle/Path/Tree Cover Problems","authors":"Wei Yu, Zhaohui Liu","doi":"10.1016/j.dam.2025.05.002","DOIUrl":"10.1016/j.dam.2025.05.002","url":null,"abstract":"<div><div>In this work we consider the Graphic Min-Max Cycle/Path/Tree Cover Problem and the Graphic Minimum Cycle/Path/Tree Cover Problem, some of which generalize the famous Graphic TSP. For all six problems, we obtain approximation algorithms with better ratios than the corresponding problems defined on general metrics. For the Graphic Minimum Path Cover Problem, we even show a best possible approximation ratio of 2, assuming <span><math><mrow><mi>P</mi><mo>≠</mo><mi>N</mi><mi>P</mi></mrow></math></span>.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"372 ","pages":"Pages 314-323"},"PeriodicalIF":1.0,"publicationDate":"2025-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143929494","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Structure and coloring of (P7, C5, diamond)-free graphs","authors":"Ran Chen, Baogang Xu","doi":"10.1016/j.dam.2025.04.059","DOIUrl":"10.1016/j.dam.2025.04.059","url":null,"abstract":"<div><div>Let <span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span> denote a path and a cycle on <span><math><mi>t</mi></math></span> vertices, respectively. A <em>diamond</em> consists of two triangles sharing exactly one edge, a <em>paw</em> is a graph obtained from a triangle by adding a pendant edge. Let <span><math><mi>H</mi></math></span> be a diamond or a paw. In this paper, we determine the structure of imperfect (<span><math><mrow><msub><mrow><mi>P</mi></mrow><mrow><mn>7</mn></mrow></msub><mo>,</mo><msub><mrow><mi>C</mi></mrow><mrow><mn>5</mn></mrow></msub><mo>,</mo><mi>H</mi></mrow></math></span>)-free graphs. As a consequence, we show that each (<span><math><mrow><msub><mrow><mi>P</mi></mrow><mrow><mn>7</mn></mrow></msub><mo>,</mo><msub><mrow><mi>C</mi></mrow><mrow><mn>5</mn></mrow></msub><mo>,</mo><mi>H</mi></mrow></math></span>)-free graph <span><math><mi>G</mi></math></span> can be polynomially colored with <span><math><mrow><mo>max</mo><mrow><mo>{</mo><mn>3</mn><mo>,</mo><mi>ω</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>}</mo></mrow></mrow></math></span> colors. We also show that each (<span><math><mrow><msub><mrow><mi>P</mi></mrow><mrow><mn>7</mn></mrow></msub><mo>,</mo><msub><mrow><mi>C</mi></mrow><mrow><mn>5</mn></mrow></msub></mrow></math></span>, bull)-free graph is perfectly divisible, where a <em>bull</em> is a graph consisting of a triangle with two disjoint pendant edges. As a consequence, <span><math><mrow><mi>χ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≤</mo><mfenced><mrow><mfrac><mrow><mi>ω</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>+</mo><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></mfenced></mrow></math></span> if <span><math><mi>G</mi></math></span> is (<span><math><mrow><msub><mrow><mi>P</mi></mrow><mrow><mn>7</mn></mrow></msub><mo>,</mo><msub><mrow><mi>C</mi></mrow><mrow><mn>5</mn></mrow></msub></mrow></math></span>, bull)-free.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"372 ","pages":"Pages 298-307"},"PeriodicalIF":1.0,"publicationDate":"2025-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143922794","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The Laplacian characteristic polynomial of the path-tree of the complete graph","authors":"Jinqiu Zhou, Weigen Yan","doi":"10.1016/j.dam.2025.04.025","DOIUrl":"10.1016/j.dam.2025.04.025","url":null,"abstract":"<div><div>Let <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> be the path tree of the complete graph <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>. Denote by <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> the weighted path with vertex set <span><math><mrow><mi>V</mi><mrow><mo>(</mo><msub><mrow><mi>H</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></mrow><mo>=</mo><mrow><mo>{</mo><msub><mrow><mi>v</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>|</mo><mn>1</mn><mo>≤</mo><mi>i</mi><mo>≤</mo><mn>2</mn><mi>n</mi><mo>−</mo><mn>1</mn><mo>}</mo></mrow></mrow></math></span>, edge set <span><math><mrow><mi>E</mi><mrow><mo>(</mo><msub><mrow><mi>H</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></mrow><mo>=</mo><mrow><mo>{</mo><msub><mrow><mi>v</mi></mrow><mrow><mi>i</mi></mrow></msub><msub><mrow><mi>v</mi></mrow><mrow><mi>i</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>|</mo><mn>1</mn><mo>≤</mo><mi>i</mi><mo>≤</mo><mn>2</mn><mi>n</mi><mo>−</mo><mn>2</mn><mo>}</mo></mrow></mrow></math></span>, weighted function <span><math><mrow><mi>w</mi><mrow><mo>(</mo><msub><mrow><mi>v</mi></mrow><mrow><mi>i</mi></mrow></msub><msub><mrow><mi>v</mi></mrow><mrow><mi>i</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>)</mo></mrow><mo>=</mo><mi>i</mi><mo>/</mo><mn>2</mn></mrow></math></span> if <span><math><mi>i</mi></math></span> is even and <span><math><mrow><mi>w</mi><mrow><mo>(</mo><msub><mrow><mi>v</mi></mrow><mrow><mi>i</mi></mrow></msub><msub><mrow><mi>v</mi></mrow><mrow><mi>i</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>)</mo></mrow><mo>=</mo><mn>1</mn></mrow></math></span> otherwise. Guo and Chen (2024) proved that the matching polynomial of <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> can be represented by the matching polynomials of the compete graphs. In this paper, we show that the Laplacian characteristic polynomial <span><math><mrow><mi>σ</mi><mrow><mo>(</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>,</mo><mi>x</mi><mo>)</mo></mrow></mrow></math></span> of <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> satisfies: <span><span><span><math><mrow><mi>σ</mi><mrow><mo>(</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>,</mo><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow><mo>=</mo><mi>x</mi><msub><mrow><mi>a</mi></mrow><mrow><mi>n</mi></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><munderover><mrow><mo>∏</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>2</mn></mrow><mrow><mi>n</mi></mrow></munderover><msub><mrow><mi>b</mi></mrow><mrow><mi>i</mi></mrow></msub><msup><mrow><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow><mrow><msub><mrow><mrow><mo>(</mo><mi>n</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow></mrow><mrow><mi>n</mi><mo>−</mo><mi>i</mi><mo>+</mo><mn>2</mn></mrow></msub><mo>/</mo><mrow><mo>(</mo><mi>i</mi><mo>−<","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"372 ","pages":"Pages 308-313"},"PeriodicalIF":1.0,"publicationDate":"2025-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143922793","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On proper conflict-free colorings of IC-planar graphs","authors":"Yali Wu, Xin Zhang","doi":"10.1016/j.dam.2025.05.005","DOIUrl":"10.1016/j.dam.2025.05.005","url":null,"abstract":"<div><div>A proper conflict-free coloring of a graph is a proper vertex coloring ensuring that for every vertex of degree at least one there exists a color that appears exactly once in its open neighborhood. An IC-planar graph is a graph that can be embedded in a plane without having any edge crossed more than once, with the condition that each vertex is linked to no more than one crossing edge. Proper conflict-free coloring has several practical applications, especially in the areas of wireless networks, frequency allocation, and scheduling problems, and IC-planarity is a powerful tool in the areas of network design, graph drawing, and visualization. This paper introduces the inaugural finding regarding the proper conflict-free coloring of IC-planar graphs, demonstrating that any such graph can be properly conflict-free colored with no more than 20 colors.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"373 ","pages":"Pages 217-223"},"PeriodicalIF":1.0,"publicationDate":"2025-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143924433","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Extremal results on the spectral radius of function-weighted adjacency matrices","authors":"Xueliang Li, Ruiling Zheng","doi":"10.1016/j.dam.2025.04.060","DOIUrl":"10.1016/j.dam.2025.04.060","url":null,"abstract":"<div><div>For a graph <span><math><mrow><mi>G</mi><mo>=</mo><mrow><mo>(</mo><mi>V</mi><mo>,</mo><mi>E</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><msub><mrow><mi>v</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>∈</mo><mi>V</mi></mrow></math></span>, denote by <span><math><msub><mrow><mi>d</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> the degree of vertex <span><math><msub><mrow><mi>v</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span>. Let <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></mrow><mo>></mo><mn>0</mn></mrow></math></span> be a <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>-function in <span><math><msup><mrow><mrow><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mo>+</mo></mrow></msup><mo>)</mo></mrow></mrow><mrow><mn>2</mn></mrow></msup></math></span> and be symmetric in <span><math><mi>x</mi></math></span> and <span><math><mi>y</mi></math></span>. If for every <span><math><mover><mrow><mi>x</mi></mrow><mrow><mo>̄</mo></mrow></mover></math></span> such that <span><math><mrow><mrow><mo>{</mo><mover><mrow><mi>x</mi></mrow><mrow><mo>̄</mo></mrow></mover><mo>}</mo></mrow><mo>×</mo><msup><mrow><mi>R</mi></mrow><mrow><mo>+</mo></mrow></msup><mo>≠</mo><mo>∅</mo></mrow></math></span>, then <span><math><mrow><msubsup><mrow><mi>f</mi></mrow><mrow><mi>x</mi></mrow><mrow><mo>′</mo></mrow></msubsup><mrow><mo>(</mo><mover><mrow><mi>x</mi></mrow><mrow><mo>̄</mo></mrow></mover><mo>,</mo><mi>y</mi><mo>)</mo></mrow><mo>≥</mo><mn>0</mn></mrow></math></span> (resp. <span><math><mrow><msubsup><mrow><mi>f</mi></mrow><mrow><mi>x</mi></mrow><mrow><mo>′</mo><mo>′</mo></mrow></msubsup><mrow><mo>(</mo><mover><mrow><mi>x</mi></mrow><mrow><mo>̄</mo></mrow></mover><mo>,</mo><mi>y</mi><mo>)</mo></mrow><mo>≥</mo><mn>0</mn></mrow></math></span> ) for all <span><math><mrow><mrow><mo>(</mo><mover><mrow><mi>x</mi></mrow><mrow><mo>̄</mo></mrow></mover><mo>,</mo><mi>y</mi><mo>)</mo></mrow><mo>∈</mo><msup><mrow><mrow><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mo>+</mo></mrow></msup><mo>)</mo></mrow></mrow><mrow><mn>2</mn></mrow></msup></mrow></math></span>, we say <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></mrow></mrow></math></span> is increasing (resp. convex) in variable <span><math><mi>x</mi></math></span>. The function-weighted adjacency matrix <span><math><mrow><msub><mrow><mi>A</mi></mrow><mrow><mi>f</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> of a graph <span><math><mi>G</mi></math></span> is a square matrix, where the <span><math><mrow><mo>(</mo><mi>i</mi><mo>,</mo><mi>j</mi><mo>)</mo></mrow></math></span>-entry is equal to <span><math><mrow><mi>f</mi><mrow><mo>(</mo><msub><mrow><mi>d</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>,</mo><msub><mrow><mi>d</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>)</mo></mrow></mrow></math></span> if the vertices <span><math><msub><mrow><mi","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"373 ","pages":"Pages 204-216"},"PeriodicalIF":1.0,"publicationDate":"2025-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143916939","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Bo-Jun Yuan , Ni Yang , Hong-Yan Ge , Shi-Cai Gong
{"title":"The number of dissociation sets in connected graphs","authors":"Bo-Jun Yuan , Ni Yang , Hong-Yan Ge , Shi-Cai Gong","doi":"10.1016/j.dam.2025.04.057","DOIUrl":"10.1016/j.dam.2025.04.057","url":null,"abstract":"<div><div>Extremal problems related to the enumeration of graph substructures, such as independent sets, matchings, and induced matchings, have become a prominent area of research with the advancement of graph theory. A subset of vertices in a graph is called a dissociation set if it induces a subgraph with vertex degree at most 1, making it a natural generalization of these previously studied substructures. In this paper, we present efficient tools to strictly increase the number of dissociation sets in a connected graph. Furthermore, we establish that the maximum number of dissociation sets among all connected graphs of order <span><math><mi>n</mi></math></span> is given by <span><span><span><math><mfenced><mrow><mtable><mtr><mtd><msup><mrow><mn>2</mn></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msup><mo>+</mo><mrow><mo>(</mo><mi>n</mi><mo>+</mo><mn>3</mn><mo>)</mo></mrow><mi>⋅</mi><msup><mrow><mn>2</mn></mrow><mrow><mfrac><mrow><mi>n</mi><mo>−</mo><mn>5</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msup><mo>,</mo><mspace></mspace></mtd><mtd><mi>if</mi><mspace></mspace><mi>n</mi><mspace></mspace><mi>is</mi><mspace></mspace><mi>odd</mi><mo>;</mo></mtd></mtr><mtr><mtd><msup><mrow><mn>2</mn></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msup><mo>+</mo><mrow><mo>(</mo><mi>n</mi><mo>+</mo><mn>6</mn><mo>)</mo></mrow><mi>⋅</mi><msup><mrow><mn>2</mn></mrow><mrow><mfrac><mrow><mi>n</mi><mo>−</mo><mn>6</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msup><mo>,</mo><mspace></mspace></mtd><mtd><mi>if</mi><mspace></mspace><mi>n</mi><mspace></mspace><mi>is</mi><mspace></mspace><mi>even</mi><mo>.</mo></mtd></mtr><mtr><mtd><mspace></mspace></mtd></mtr></mtable></mrow></mfenced></math></span></span></span>Additionally, we determine the achievable upper bound on the number of dissociation sets in a tree of order <span><math><mi>n</mi></math></span> and characterize the corresponding extremal graphs as an intermediate result. Finally, we identify the unicyclic graph that is the candidate for having the second largest number of dissociation sets among all connected graphs.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"373 ","pages":"Pages 196-203"},"PeriodicalIF":1.0,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143906658","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Compositions of digraphs: a survey","authors":"Yuefang Sun","doi":"10.1016/j.dam.2025.04.053","DOIUrl":"10.1016/j.dam.2025.04.053","url":null,"abstract":"<div><div>In this survey we overview known results and get several new results on digraph compositions which generalize several classes of digraphs, including extended semicomplete digraphs, quasi-transitive digraphs, lexicographic product digraphs and round decomposable locally semicomplete digraphs. After an introductory section, the paper is divided into six sections: connectivity and linkages, kings and kernels, paths, cycles, acyclic spanning subdigraphs, strong spanning subdigraphs. This survey also contains some conjectures and open problems for further study.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"373 ","pages":"Pages 137-153"},"PeriodicalIF":1.0,"publicationDate":"2025-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143906659","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}