{"title":"渐近基的密集子集","authors":"Jin-Hui Fang","doi":"10.1016/j.dam.2025.07.014","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><mrow><mi>h</mi><mo>⩾</mo><mn>2</mn></mrow></math></span> be an integer. A set <span><math><mi>A</mi></math></span> of nonnegative integers is defined as an asymptotic basis of order <span><math><mi>h</mi></math></span> if all sufficiently large integers can be expressed as a sum of <span><math><mi>h</mi></math></span> elements from <span><math><mi>A</mi></math></span>. Write <span><math><mrow><msub><mrow><mi>d</mi></mrow><mrow><mi>L</mi></mrow></msub><mrow><mo>(</mo><mi>A</mi><mo>)</mo></mrow></mrow></math></span> as the lower asymptotic density of <span><math><mi>A</mi></math></span> and <span><math><mrow><msub><mrow><mi>d</mi></mrow><mrow><mi>U</mi></mrow></msub><mrow><mo>(</mo><mi>A</mi><mo>)</mo></mrow></mrow></math></span> as the upper asymptotic density of <span><math><mi>A</mi></math></span>. In 1989, Nathanson and Sárközy proved that, if <span><math><mi>A</mi></math></span> is an asymptotic basis of order <span><math><mi>h</mi></math></span> and <span><math><mi>B</mi></math></span> is a subset of <span><math><mi>A</mi></math></span> with <span><math><mrow><msub><mrow><mi>d</mi></mrow><mrow><mi>L</mi></mrow></msub><mrow><mo>(</mo><mi>B</mi><mo>)</mo></mrow><mo>></mo><mn>1</mn><mo>/</mo><mi>h</mi></mrow></math></span>, then there exists a finite subset <span><math><mi>F</mi></math></span> of <span><math><mi>A</mi></math></span> such that <span><math><mrow><mi>F</mi><mo>∪</mo><mi>B</mi></mrow></math></span> is an asymptotic basis of order <span><math><mi>h</mi></math></span>. Recently, Xu and Chen [C. R. Math. Acad. Sci. Paris 362 (2024), 45-49.] further proved that, if <span><math><mi>A</mi></math></span> is a set of nonnegative integers with <span><math><mrow><msub><mrow><mi>d</mi></mrow><mrow><mi>L</mi></mrow></msub><mrow><mo>(</mo><mi>A</mi><mo>)</mo></mrow><mo>></mo><mn>0</mn></mrow></math></span>, then there exists a subset <span><math><mi>B</mi></math></span> of <span><math><mi>A</mi></math></span> with <span><math><mrow><msub><mrow><mi>d</mi></mrow><mrow><mi>L</mi></mrow></msub><mrow><mo>(</mo><mi>B</mi><mo>)</mo></mrow><mo>></mo><mn>0</mn></mrow></math></span> such that <span><math><mrow><mi>F</mi><mo>∪</mo><mi>B</mi></mrow></math></span> is not an asymptotic basis of order <span><math><mi>h</mi></math></span> for any finite set <span><math><mi>F</mi></math></span>. In this paper, we improve the above result, that is: if <span><math><mi>A</mi></math></span> is a set of nonnegative integers with <span><math><mrow><msub><mrow><mi>d</mi></mrow><mrow><mi>L</mi></mrow></msub><mrow><mo>(</mo><mi>A</mi><mo>)</mo></mrow><mo>></mo><mn>0</mn></mrow></math></span>, then there exists a subset <span><math><mi>B</mi></math></span> of <span><math><mi>A</mi></math></span> such that <span><span><span><math><mrow><msub><mrow><mi>d</mi></mrow><mrow><mi>L</mi></mrow></msub><mrow><mo>(</mo><mi>B</mi><mo>)</mo></mrow><mo>⩾</mo><mfrac><mrow><msub><mrow><mi>d</mi></mrow><mrow><mi>L</mi></mrow></msub><mrow><mo>(</mo><mi>A</mi><mo>)</mo></mrow></mrow><mrow><mi>h</mi><mo>−</mo><mn>1</mn><mo>+</mo><msub><mrow><mi>d</mi></mrow><mrow><mi>L</mi></mrow></msub><mrow><mo>(</mo><mi>A</mi><mo>)</mo></mrow></mrow></mfrac><mi>⋅</mi><msub><mrow><mi>d</mi></mrow><mrow><mi>L</mi></mrow></msub><mrow><mo>(</mo><mi>A</mi><mo>)</mo></mrow><mo>,</mo><msub><mrow><mi>d</mi></mrow><mrow><mi>U</mi></mrow></msub><mrow><mo>(</mo><mi>B</mi><mo>)</mo></mrow><mo>=</mo><msub><mrow><mi>d</mi></mrow><mrow><mi>U</mi></mrow></msub><mrow><mo>(</mo><mi>A</mi><mo>)</mo></mrow><mo>,</mo></mrow></math></span></span></span>and <span><math><mrow><mi>F</mi><mo>∪</mo><mi>B</mi></mrow></math></span> is not an asymptotic basis of order <span><math><mi>h</mi></math></span> for any finite set <span><math><mi>F</mi></math></span>. We also show that in some sense the lower bound <span><math><mrow><mfrac><mrow><msub><mrow><mi>d</mi></mrow><mrow><mi>L</mi></mrow></msub><mrow><mo>(</mo><mi>A</mi><mo>)</mo></mrow></mrow><mrow><mi>h</mi><mo>−</mo><mn>1</mn><mo>+</mo><msub><mrow><mi>d</mi></mrow><mrow><mi>L</mi></mrow></msub><mrow><mo>(</mo><mi>A</mi><mo>)</mo></mrow></mrow></mfrac><mi>⋅</mi><msub><mrow><mi>d</mi></mrow><mrow><mi>L</mi></mrow></msub><mrow><mo>(</mo><mi>A</mi><mo>)</mo></mrow></mrow></math></span> is the best possible.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"378 ","pages":"Pages 171-173"},"PeriodicalIF":1.0000,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dense subsets of asymptotic bases\",\"authors\":\"Jin-Hui Fang\",\"doi\":\"10.1016/j.dam.2025.07.014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Let <span><math><mrow><mi>h</mi><mo>⩾</mo><mn>2</mn></mrow></math></span> be an integer. A set <span><math><mi>A</mi></math></span> of nonnegative integers is defined as an asymptotic basis of order <span><math><mi>h</mi></math></span> if all sufficiently large integers can be expressed as a sum of <span><math><mi>h</mi></math></span> elements from <span><math><mi>A</mi></math></span>. Write <span><math><mrow><msub><mrow><mi>d</mi></mrow><mrow><mi>L</mi></mrow></msub><mrow><mo>(</mo><mi>A</mi><mo>)</mo></mrow></mrow></math></span> as the lower asymptotic density of <span><math><mi>A</mi></math></span> and <span><math><mrow><msub><mrow><mi>d</mi></mrow><mrow><mi>U</mi></mrow></msub><mrow><mo>(</mo><mi>A</mi><mo>)</mo></mrow></mrow></math></span> as the upper asymptotic density of <span><math><mi>A</mi></math></span>. In 1989, Nathanson and Sárközy proved that, if <span><math><mi>A</mi></math></span> is an asymptotic basis of order <span><math><mi>h</mi></math></span> and <span><math><mi>B</mi></math></span> is a subset of <span><math><mi>A</mi></math></span> with <span><math><mrow><msub><mrow><mi>d</mi></mrow><mrow><mi>L</mi></mrow></msub><mrow><mo>(</mo><mi>B</mi><mo>)</mo></mrow><mo>></mo><mn>1</mn><mo>/</mo><mi>h</mi></mrow></math></span>, then there exists a finite subset <span><math><mi>F</mi></math></span> of <span><math><mi>A</mi></math></span> such that <span><math><mrow><mi>F</mi><mo>∪</mo><mi>B</mi></mrow></math></span> is an asymptotic basis of order <span><math><mi>h</mi></math></span>. Recently, Xu and Chen [C. R. Math. Acad. Sci. Paris 362 (2024), 45-49.] further proved that, if <span><math><mi>A</mi></math></span> is a set of nonnegative integers with <span><math><mrow><msub><mrow><mi>d</mi></mrow><mrow><mi>L</mi></mrow></msub><mrow><mo>(</mo><mi>A</mi><mo>)</mo></mrow><mo>></mo><mn>0</mn></mrow></math></span>, then there exists a subset <span><math><mi>B</mi></math></span> of <span><math><mi>A</mi></math></span> with <span><math><mrow><msub><mrow><mi>d</mi></mrow><mrow><mi>L</mi></mrow></msub><mrow><mo>(</mo><mi>B</mi><mo>)</mo></mrow><mo>></mo><mn>0</mn></mrow></math></span> such that <span><math><mrow><mi>F</mi><mo>∪</mo><mi>B</mi></mrow></math></span> is not an asymptotic basis of order <span><math><mi>h</mi></math></span> for any finite set <span><math><mi>F</mi></math></span>. In this paper, we improve the above result, that is: if <span><math><mi>A</mi></math></span> is a set of nonnegative integers with <span><math><mrow><msub><mrow><mi>d</mi></mrow><mrow><mi>L</mi></mrow></msub><mrow><mo>(</mo><mi>A</mi><mo>)</mo></mrow><mo>></mo><mn>0</mn></mrow></math></span>, then there exists a subset <span><math><mi>B</mi></math></span> of <span><math><mi>A</mi></math></span> such that <span><span><span><math><mrow><msub><mrow><mi>d</mi></mrow><mrow><mi>L</mi></mrow></msub><mrow><mo>(</mo><mi>B</mi><mo>)</mo></mrow><mo>⩾</mo><mfrac><mrow><msub><mrow><mi>d</mi></mrow><mrow><mi>L</mi></mrow></msub><mrow><mo>(</mo><mi>A</mi><mo>)</mo></mrow></mrow><mrow><mi>h</mi><mo>−</mo><mn>1</mn><mo>+</mo><msub><mrow><mi>d</mi></mrow><mrow><mi>L</mi></mrow></msub><mrow><mo>(</mo><mi>A</mi><mo>)</mo></mrow></mrow></mfrac><mi>⋅</mi><msub><mrow><mi>d</mi></mrow><mrow><mi>L</mi></mrow></msub><mrow><mo>(</mo><mi>A</mi><mo>)</mo></mrow><mo>,</mo><msub><mrow><mi>d</mi></mrow><mrow><mi>U</mi></mrow></msub><mrow><mo>(</mo><mi>B</mi><mo>)</mo></mrow><mo>=</mo><msub><mrow><mi>d</mi></mrow><mrow><mi>U</mi></mrow></msub><mrow><mo>(</mo><mi>A</mi><mo>)</mo></mrow><mo>,</mo></mrow></math></span></span></span>and <span><math><mrow><mi>F</mi><mo>∪</mo><mi>B</mi></mrow></math></span> is not an asymptotic basis of order <span><math><mi>h</mi></math></span> for any finite set <span><math><mi>F</mi></math></span>. We also show that in some sense the lower bound <span><math><mrow><mfrac><mrow><msub><mrow><mi>d</mi></mrow><mrow><mi>L</mi></mrow></msub><mrow><mo>(</mo><mi>A</mi><mo>)</mo></mrow></mrow><mrow><mi>h</mi><mo>−</mo><mn>1</mn><mo>+</mo><msub><mrow><mi>d</mi></mrow><mrow><mi>L</mi></mrow></msub><mrow><mo>(</mo><mi>A</mi><mo>)</mo></mrow></mrow></mfrac><mi>⋅</mi><msub><mrow><mi>d</mi></mrow><mrow><mi>L</mi></mrow></msub><mrow><mo>(</mo><mi>A</mi><mo>)</mo></mrow></mrow></math></span> is the best possible.</div></div>\",\"PeriodicalId\":50573,\"journal\":{\"name\":\"Discrete Applied Mathematics\",\"volume\":\"378 \",\"pages\":\"Pages 171-173\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0166218X25004020\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166218X25004020","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Let be an integer. A set of nonnegative integers is defined as an asymptotic basis of order if all sufficiently large integers can be expressed as a sum of elements from . Write as the lower asymptotic density of and as the upper asymptotic density of . In 1989, Nathanson and Sárközy proved that, if is an asymptotic basis of order and is a subset of with , then there exists a finite subset of such that is an asymptotic basis of order . Recently, Xu and Chen [C. R. Math. Acad. Sci. Paris 362 (2024), 45-49.] further proved that, if is a set of nonnegative integers with , then there exists a subset of with such that is not an asymptotic basis of order for any finite set . In this paper, we improve the above result, that is: if is a set of nonnegative integers with , then there exists a subset of such that and is not an asymptotic basis of order for any finite set . We also show that in some sense the lower bound is the best possible.
期刊介绍:
The aim of Discrete Applied Mathematics is to bring together research papers in different areas of algorithmic and applicable discrete mathematics as well as applications of combinatorial mathematics to informatics and various areas of science and technology. Contributions presented to the journal can be research papers, short notes, surveys, and possibly research problems. The "Communications" section will be devoted to the fastest possible publication of recent research results that are checked and recommended for publication by a member of the Editorial Board. The journal will also publish a limited number of book announcements as well as proceedings of conferences. These proceedings will be fully refereed and adhere to the normal standards of the journal.
Potential authors are advised to view the journal and the open calls-for-papers of special issues before submitting their manuscripts. Only high-quality, original work that is within the scope of the journal or the targeted special issue will be considered.