渐近基的密集子集

IF 1 3区 数学 Q3 MATHEMATICS, APPLIED
Jin-Hui Fang
{"title":"渐近基的密集子集","authors":"Jin-Hui Fang","doi":"10.1016/j.dam.2025.07.014","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><mrow><mi>h</mi><mo>⩾</mo><mn>2</mn></mrow></math></span> be an integer. A set <span><math><mi>A</mi></math></span> of nonnegative integers is defined as an asymptotic basis of order <span><math><mi>h</mi></math></span> if all sufficiently large integers can be expressed as a sum of <span><math><mi>h</mi></math></span> elements from <span><math><mi>A</mi></math></span>. Write <span><math><mrow><msub><mrow><mi>d</mi></mrow><mrow><mi>L</mi></mrow></msub><mrow><mo>(</mo><mi>A</mi><mo>)</mo></mrow></mrow></math></span> as the lower asymptotic density of <span><math><mi>A</mi></math></span> and <span><math><mrow><msub><mrow><mi>d</mi></mrow><mrow><mi>U</mi></mrow></msub><mrow><mo>(</mo><mi>A</mi><mo>)</mo></mrow></mrow></math></span> as the upper asymptotic density of <span><math><mi>A</mi></math></span>. In 1989, Nathanson and Sárközy proved that, if <span><math><mi>A</mi></math></span> is an asymptotic basis of order <span><math><mi>h</mi></math></span> and <span><math><mi>B</mi></math></span> is a subset of <span><math><mi>A</mi></math></span> with <span><math><mrow><msub><mrow><mi>d</mi></mrow><mrow><mi>L</mi></mrow></msub><mrow><mo>(</mo><mi>B</mi><mo>)</mo></mrow><mo>&gt;</mo><mn>1</mn><mo>/</mo><mi>h</mi></mrow></math></span>, then there exists a finite subset <span><math><mi>F</mi></math></span> of <span><math><mi>A</mi></math></span> such that <span><math><mrow><mi>F</mi><mo>∪</mo><mi>B</mi></mrow></math></span> is an asymptotic basis of order <span><math><mi>h</mi></math></span>. Recently, Xu and Chen [C. R. Math. Acad. Sci. Paris 362 (2024), 45-49.] further proved that, if <span><math><mi>A</mi></math></span> is a set of nonnegative integers with <span><math><mrow><msub><mrow><mi>d</mi></mrow><mrow><mi>L</mi></mrow></msub><mrow><mo>(</mo><mi>A</mi><mo>)</mo></mrow><mo>&gt;</mo><mn>0</mn></mrow></math></span>, then there exists a subset <span><math><mi>B</mi></math></span> of <span><math><mi>A</mi></math></span> with <span><math><mrow><msub><mrow><mi>d</mi></mrow><mrow><mi>L</mi></mrow></msub><mrow><mo>(</mo><mi>B</mi><mo>)</mo></mrow><mo>&gt;</mo><mn>0</mn></mrow></math></span> such that <span><math><mrow><mi>F</mi><mo>∪</mo><mi>B</mi></mrow></math></span> is not an asymptotic basis of order <span><math><mi>h</mi></math></span> for any finite set <span><math><mi>F</mi></math></span>. In this paper, we improve the above result, that is: if <span><math><mi>A</mi></math></span> is a set of nonnegative integers with <span><math><mrow><msub><mrow><mi>d</mi></mrow><mrow><mi>L</mi></mrow></msub><mrow><mo>(</mo><mi>A</mi><mo>)</mo></mrow><mo>&gt;</mo><mn>0</mn></mrow></math></span>, then there exists a subset <span><math><mi>B</mi></math></span> of <span><math><mi>A</mi></math></span> such that <span><span><span><math><mrow><msub><mrow><mi>d</mi></mrow><mrow><mi>L</mi></mrow></msub><mrow><mo>(</mo><mi>B</mi><mo>)</mo></mrow><mo>⩾</mo><mfrac><mrow><msub><mrow><mi>d</mi></mrow><mrow><mi>L</mi></mrow></msub><mrow><mo>(</mo><mi>A</mi><mo>)</mo></mrow></mrow><mrow><mi>h</mi><mo>−</mo><mn>1</mn><mo>+</mo><msub><mrow><mi>d</mi></mrow><mrow><mi>L</mi></mrow></msub><mrow><mo>(</mo><mi>A</mi><mo>)</mo></mrow></mrow></mfrac><mi>⋅</mi><msub><mrow><mi>d</mi></mrow><mrow><mi>L</mi></mrow></msub><mrow><mo>(</mo><mi>A</mi><mo>)</mo></mrow><mo>,</mo><msub><mrow><mi>d</mi></mrow><mrow><mi>U</mi></mrow></msub><mrow><mo>(</mo><mi>B</mi><mo>)</mo></mrow><mo>=</mo><msub><mrow><mi>d</mi></mrow><mrow><mi>U</mi></mrow></msub><mrow><mo>(</mo><mi>A</mi><mo>)</mo></mrow><mo>,</mo></mrow></math></span></span></span>and <span><math><mrow><mi>F</mi><mo>∪</mo><mi>B</mi></mrow></math></span> is not an asymptotic basis of order <span><math><mi>h</mi></math></span> for any finite set <span><math><mi>F</mi></math></span>. We also show that in some sense the lower bound <span><math><mrow><mfrac><mrow><msub><mrow><mi>d</mi></mrow><mrow><mi>L</mi></mrow></msub><mrow><mo>(</mo><mi>A</mi><mo>)</mo></mrow></mrow><mrow><mi>h</mi><mo>−</mo><mn>1</mn><mo>+</mo><msub><mrow><mi>d</mi></mrow><mrow><mi>L</mi></mrow></msub><mrow><mo>(</mo><mi>A</mi><mo>)</mo></mrow></mrow></mfrac><mi>⋅</mi><msub><mrow><mi>d</mi></mrow><mrow><mi>L</mi></mrow></msub><mrow><mo>(</mo><mi>A</mi><mo>)</mo></mrow></mrow></math></span> is the best possible.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"378 ","pages":"Pages 171-173"},"PeriodicalIF":1.0000,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dense subsets of asymptotic bases\",\"authors\":\"Jin-Hui Fang\",\"doi\":\"10.1016/j.dam.2025.07.014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Let <span><math><mrow><mi>h</mi><mo>⩾</mo><mn>2</mn></mrow></math></span> be an integer. A set <span><math><mi>A</mi></math></span> of nonnegative integers is defined as an asymptotic basis of order <span><math><mi>h</mi></math></span> if all sufficiently large integers can be expressed as a sum of <span><math><mi>h</mi></math></span> elements from <span><math><mi>A</mi></math></span>. Write <span><math><mrow><msub><mrow><mi>d</mi></mrow><mrow><mi>L</mi></mrow></msub><mrow><mo>(</mo><mi>A</mi><mo>)</mo></mrow></mrow></math></span> as the lower asymptotic density of <span><math><mi>A</mi></math></span> and <span><math><mrow><msub><mrow><mi>d</mi></mrow><mrow><mi>U</mi></mrow></msub><mrow><mo>(</mo><mi>A</mi><mo>)</mo></mrow></mrow></math></span> as the upper asymptotic density of <span><math><mi>A</mi></math></span>. In 1989, Nathanson and Sárközy proved that, if <span><math><mi>A</mi></math></span> is an asymptotic basis of order <span><math><mi>h</mi></math></span> and <span><math><mi>B</mi></math></span> is a subset of <span><math><mi>A</mi></math></span> with <span><math><mrow><msub><mrow><mi>d</mi></mrow><mrow><mi>L</mi></mrow></msub><mrow><mo>(</mo><mi>B</mi><mo>)</mo></mrow><mo>&gt;</mo><mn>1</mn><mo>/</mo><mi>h</mi></mrow></math></span>, then there exists a finite subset <span><math><mi>F</mi></math></span> of <span><math><mi>A</mi></math></span> such that <span><math><mrow><mi>F</mi><mo>∪</mo><mi>B</mi></mrow></math></span> is an asymptotic basis of order <span><math><mi>h</mi></math></span>. Recently, Xu and Chen [C. R. Math. Acad. Sci. Paris 362 (2024), 45-49.] further proved that, if <span><math><mi>A</mi></math></span> is a set of nonnegative integers with <span><math><mrow><msub><mrow><mi>d</mi></mrow><mrow><mi>L</mi></mrow></msub><mrow><mo>(</mo><mi>A</mi><mo>)</mo></mrow><mo>&gt;</mo><mn>0</mn></mrow></math></span>, then there exists a subset <span><math><mi>B</mi></math></span> of <span><math><mi>A</mi></math></span> with <span><math><mrow><msub><mrow><mi>d</mi></mrow><mrow><mi>L</mi></mrow></msub><mrow><mo>(</mo><mi>B</mi><mo>)</mo></mrow><mo>&gt;</mo><mn>0</mn></mrow></math></span> such that <span><math><mrow><mi>F</mi><mo>∪</mo><mi>B</mi></mrow></math></span> is not an asymptotic basis of order <span><math><mi>h</mi></math></span> for any finite set <span><math><mi>F</mi></math></span>. In this paper, we improve the above result, that is: if <span><math><mi>A</mi></math></span> is a set of nonnegative integers with <span><math><mrow><msub><mrow><mi>d</mi></mrow><mrow><mi>L</mi></mrow></msub><mrow><mo>(</mo><mi>A</mi><mo>)</mo></mrow><mo>&gt;</mo><mn>0</mn></mrow></math></span>, then there exists a subset <span><math><mi>B</mi></math></span> of <span><math><mi>A</mi></math></span> such that <span><span><span><math><mrow><msub><mrow><mi>d</mi></mrow><mrow><mi>L</mi></mrow></msub><mrow><mo>(</mo><mi>B</mi><mo>)</mo></mrow><mo>⩾</mo><mfrac><mrow><msub><mrow><mi>d</mi></mrow><mrow><mi>L</mi></mrow></msub><mrow><mo>(</mo><mi>A</mi><mo>)</mo></mrow></mrow><mrow><mi>h</mi><mo>−</mo><mn>1</mn><mo>+</mo><msub><mrow><mi>d</mi></mrow><mrow><mi>L</mi></mrow></msub><mrow><mo>(</mo><mi>A</mi><mo>)</mo></mrow></mrow></mfrac><mi>⋅</mi><msub><mrow><mi>d</mi></mrow><mrow><mi>L</mi></mrow></msub><mrow><mo>(</mo><mi>A</mi><mo>)</mo></mrow><mo>,</mo><msub><mrow><mi>d</mi></mrow><mrow><mi>U</mi></mrow></msub><mrow><mo>(</mo><mi>B</mi><mo>)</mo></mrow><mo>=</mo><msub><mrow><mi>d</mi></mrow><mrow><mi>U</mi></mrow></msub><mrow><mo>(</mo><mi>A</mi><mo>)</mo></mrow><mo>,</mo></mrow></math></span></span></span>and <span><math><mrow><mi>F</mi><mo>∪</mo><mi>B</mi></mrow></math></span> is not an asymptotic basis of order <span><math><mi>h</mi></math></span> for any finite set <span><math><mi>F</mi></math></span>. We also show that in some sense the lower bound <span><math><mrow><mfrac><mrow><msub><mrow><mi>d</mi></mrow><mrow><mi>L</mi></mrow></msub><mrow><mo>(</mo><mi>A</mi><mo>)</mo></mrow></mrow><mrow><mi>h</mi><mo>−</mo><mn>1</mn><mo>+</mo><msub><mrow><mi>d</mi></mrow><mrow><mi>L</mi></mrow></msub><mrow><mo>(</mo><mi>A</mi><mo>)</mo></mrow></mrow></mfrac><mi>⋅</mi><msub><mrow><mi>d</mi></mrow><mrow><mi>L</mi></mrow></msub><mrow><mo>(</mo><mi>A</mi><mo>)</mo></mrow></mrow></math></span> is the best possible.</div></div>\",\"PeriodicalId\":50573,\"journal\":{\"name\":\"Discrete Applied Mathematics\",\"volume\":\"378 \",\"pages\":\"Pages 171-173\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0166218X25004020\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166218X25004020","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

设h大于或等于2是一个整数。设置一个非负整数的定义是一个渐近的基础秩序h如果所有足够大整数都可以表示为一个从A h元素之和写dL (A)的渐近低密度和杜(A)上渐近的密度答:1989年,内桑森和萨科齐证明,如果是一个渐近的基础秩序h与dL和B的一个子集(B)在1 / h,然后有一个有限的子集的F, F∪B是一个渐近的基础秩序h。最近,徐和陈(C。r .数学。学会科学。巴黎362(2024),45-49。]进一步证明了,如果A是dL(A)>;0的非负整数集,则存在一个dL(B)>;0的A子集B,使得F∪B对于任意有限集F都不是h阶的渐近基。本文改进了上述结果,即:如果A是dL(A)>;0的非负整数集,则存在A的子集B,使得dL(B)大于或等于dL(A)h−1+dL(A)⋅dL(A),dU(B)=dU(A),并且F∪B对于任何有限集合F都不是h阶的渐近基。我们还表明,在某种意义上下限dL(A)h−1+dL(A)⋅dL(A)是最好的可能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dense subsets of asymptotic bases
Let h2 be an integer. A set A of nonnegative integers is defined as an asymptotic basis of order h if all sufficiently large integers can be expressed as a sum of h elements from A. Write dL(A) as the lower asymptotic density of A and dU(A) as the upper asymptotic density of A. In 1989, Nathanson and Sárközy proved that, if A is an asymptotic basis of order h and B is a subset of A with dL(B)>1/h, then there exists a finite subset F of A such that FB is an asymptotic basis of order h. Recently, Xu and Chen [C. R. Math. Acad. Sci. Paris 362 (2024), 45-49.] further proved that, if A is a set of nonnegative integers with dL(A)>0, then there exists a subset B of A with dL(B)>0 such that FB is not an asymptotic basis of order h for any finite set F. In this paper, we improve the above result, that is: if A is a set of nonnegative integers with dL(A)>0, then there exists a subset B of A such that dL(B)dL(A)h1+dL(A)dL(A),dU(B)=dU(A),and FB is not an asymptotic basis of order h for any finite set F. We also show that in some sense the lower bound dL(A)h1+dL(A)dL(A) is the best possible.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Discrete Applied Mathematics
Discrete Applied Mathematics 数学-应用数学
CiteScore
2.30
自引率
9.10%
发文量
422
审稿时长
4.5 months
期刊介绍: The aim of Discrete Applied Mathematics is to bring together research papers in different areas of algorithmic and applicable discrete mathematics as well as applications of combinatorial mathematics to informatics and various areas of science and technology. Contributions presented to the journal can be research papers, short notes, surveys, and possibly research problems. The "Communications" section will be devoted to the fastest possible publication of recent research results that are checked and recommended for publication by a member of the Editorial Board. The journal will also publish a limited number of book announcements as well as proceedings of conferences. These proceedings will be fully refereed and adhere to the normal standards of the journal. Potential authors are advised to view the journal and the open calls-for-papers of special issues before submitting their manuscripts. Only high-quality, original work that is within the scope of the journal or the targeted special issue will be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信