{"title":"On partitioning a bipartite graph into cycles and degenerated cycles","authors":"Shuya Chiba , Koshin Yoshida","doi":"10.1016/j.dam.2025.09.003","DOIUrl":null,"url":null,"abstract":"<div><div>For a bipartite graph <span><math><mi>G</mi></math></span>, let <span><math><mrow><msub><mrow><mi>σ</mi></mrow><mrow><mn>1</mn><mo>,</mo><mn>1</mn></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> be the minimum degree sum of two non-adjacent vertices in different partite sets of <span><math><mi>G</mi></math></span>. We prove the following result: If <span><math><mi>G</mi></math></span> is a balanced bipartite graph of order <span><math><mrow><mn>2</mn><mi>n</mi><mo>≥</mo><mi>k</mi></mrow></math></span>, and if <span><math><mrow><msub><mrow><mi>σ</mi></mrow><mrow><mn>1</mn><mo>,</mo><mn>1</mn></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≥</mo><mi>n</mi><mo>−</mo><mfenced><mrow><mrow><mo>(</mo><mi>k</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow><mo>/</mo><mn>2</mn></mrow></mfenced><mo>+</mo><mn>1</mn></mrow></math></span>, then one of the following (i)–(iv) holds: (i) <span><math><mi>G</mi></math></span> contains <span><math><mi>k</mi></math></span> vertex-disjoint subgraphs <span><math><mrow><msub><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>H</mi></mrow><mrow><mi>k</mi></mrow></msub></mrow></math></span> such that <span><math><mrow><msub><mrow><mo>⋃</mo></mrow><mrow><mn>1</mn><mo>≤</mo><mi>i</mi><mo>≤</mo><mi>k</mi></mrow></msub><mi>V</mi><mrow><mo>(</mo><msub><mrow><mi>H</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>)</mo></mrow><mo>=</mo><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> and for each <span><math><mi>i</mi></math></span>, <span><math><mrow><mn>1</mn><mo>≤</mo><mi>i</mi><mo>≤</mo><mi>k</mi></mrow></math></span>, <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> is a cycle or <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> or <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>; (ii) <span><math><mrow><mi>G</mi><mo>≅</mo><msub><mrow><mi>C</mi></mrow><mrow><mn>6</mn></mrow></msub></mrow></math></span> and <span><math><mrow><mi>k</mi><mo>=</mo><mn>2</mn></mrow></math></span>; (iii) <span><math><mrow><mi>G</mi><mo>≅</mo><msub><mrow><mi>C</mi></mrow><mrow><mn>8</mn></mrow></msub></mrow></math></span> and <span><math><mrow><mi>k</mi><mo>=</mo><mn>2</mn><mo>,</mo><mn>3</mn></mrow></math></span>; (iv) <span><math><mrow><mi>G</mi><mo>≅</mo><msub><mrow><mi>C</mi></mrow><mrow><mn>10</mn></mrow></msub></mrow></math></span> and <span><math><mrow><mi>k</mi><mo>=</mo><mn>4</mn></mrow></math></span>. This result is a bipartite graph version of the result of Enomoto and Li (2004). We actually prove a stronger result which gives us control on the number of cycles in the <span><math><mi>k</mi></math></span> vertex-disjoint subgraphs of (i).</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"378 ","pages":"Pages 635-646"},"PeriodicalIF":1.0000,"publicationDate":"2025-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166218X25005244","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
For a bipartite graph , let be the minimum degree sum of two non-adjacent vertices in different partite sets of . We prove the following result: If is a balanced bipartite graph of order , and if , then one of the following (i)–(iv) holds: (i) contains vertex-disjoint subgraphs such that and for each , , is a cycle or or ; (ii) and ; (iii) and ; (iv) and . This result is a bipartite graph version of the result of Enomoto and Li (2004). We actually prove a stronger result which gives us control on the number of cycles in the vertex-disjoint subgraphs of (i).
期刊介绍:
The aim of Discrete Applied Mathematics is to bring together research papers in different areas of algorithmic and applicable discrete mathematics as well as applications of combinatorial mathematics to informatics and various areas of science and technology. Contributions presented to the journal can be research papers, short notes, surveys, and possibly research problems. The "Communications" section will be devoted to the fastest possible publication of recent research results that are checked and recommended for publication by a member of the Editorial Board. The journal will also publish a limited number of book announcements as well as proceedings of conferences. These proceedings will be fully refereed and adhere to the normal standards of the journal.
Potential authors are advised to view the journal and the open calls-for-papers of special issues before submitting their manuscripts. Only high-quality, original work that is within the scope of the journal or the targeted special issue will be considered.