二部图的环与退化环的划分

IF 1 3区 数学 Q3 MATHEMATICS, APPLIED
Shuya Chiba , Koshin Yoshida
{"title":"二部图的环与退化环的划分","authors":"Shuya Chiba ,&nbsp;Koshin Yoshida","doi":"10.1016/j.dam.2025.09.003","DOIUrl":null,"url":null,"abstract":"<div><div>For a bipartite graph <span><math><mi>G</mi></math></span>, let <span><math><mrow><msub><mrow><mi>σ</mi></mrow><mrow><mn>1</mn><mo>,</mo><mn>1</mn></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> be the minimum degree sum of two non-adjacent vertices in different partite sets of <span><math><mi>G</mi></math></span>. We prove the following result: If <span><math><mi>G</mi></math></span> is a balanced bipartite graph of order <span><math><mrow><mn>2</mn><mi>n</mi><mo>≥</mo><mi>k</mi></mrow></math></span>, and if <span><math><mrow><msub><mrow><mi>σ</mi></mrow><mrow><mn>1</mn><mo>,</mo><mn>1</mn></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≥</mo><mi>n</mi><mo>−</mo><mfenced><mrow><mrow><mo>(</mo><mi>k</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow><mo>/</mo><mn>2</mn></mrow></mfenced><mo>+</mo><mn>1</mn></mrow></math></span>, then one of the following (i)–(iv) holds: (i) <span><math><mi>G</mi></math></span> contains <span><math><mi>k</mi></math></span> vertex-disjoint subgraphs <span><math><mrow><msub><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>H</mi></mrow><mrow><mi>k</mi></mrow></msub></mrow></math></span> such that <span><math><mrow><msub><mrow><mo>⋃</mo></mrow><mrow><mn>1</mn><mo>≤</mo><mi>i</mi><mo>≤</mo><mi>k</mi></mrow></msub><mi>V</mi><mrow><mo>(</mo><msub><mrow><mi>H</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>)</mo></mrow><mo>=</mo><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> and for each <span><math><mi>i</mi></math></span>, <span><math><mrow><mn>1</mn><mo>≤</mo><mi>i</mi><mo>≤</mo><mi>k</mi></mrow></math></span>, <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> is a cycle or <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> or <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>; (ii) <span><math><mrow><mi>G</mi><mo>≅</mo><msub><mrow><mi>C</mi></mrow><mrow><mn>6</mn></mrow></msub></mrow></math></span> and <span><math><mrow><mi>k</mi><mo>=</mo><mn>2</mn></mrow></math></span>; (iii) <span><math><mrow><mi>G</mi><mo>≅</mo><msub><mrow><mi>C</mi></mrow><mrow><mn>8</mn></mrow></msub></mrow></math></span> and <span><math><mrow><mi>k</mi><mo>=</mo><mn>2</mn><mo>,</mo><mn>3</mn></mrow></math></span>; (iv) <span><math><mrow><mi>G</mi><mo>≅</mo><msub><mrow><mi>C</mi></mrow><mrow><mn>10</mn></mrow></msub></mrow></math></span> and <span><math><mrow><mi>k</mi><mo>=</mo><mn>4</mn></mrow></math></span>. This result is a bipartite graph version of the result of Enomoto and Li (2004). We actually prove a stronger result which gives us control on the number of cycles in the <span><math><mi>k</mi></math></span> vertex-disjoint subgraphs of (i).</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"378 ","pages":"Pages 635-646"},"PeriodicalIF":1.0000,"publicationDate":"2025-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On partitioning a bipartite graph into cycles and degenerated cycles\",\"authors\":\"Shuya Chiba ,&nbsp;Koshin Yoshida\",\"doi\":\"10.1016/j.dam.2025.09.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>For a bipartite graph <span><math><mi>G</mi></math></span>, let <span><math><mrow><msub><mrow><mi>σ</mi></mrow><mrow><mn>1</mn><mo>,</mo><mn>1</mn></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> be the minimum degree sum of two non-adjacent vertices in different partite sets of <span><math><mi>G</mi></math></span>. We prove the following result: If <span><math><mi>G</mi></math></span> is a balanced bipartite graph of order <span><math><mrow><mn>2</mn><mi>n</mi><mo>≥</mo><mi>k</mi></mrow></math></span>, and if <span><math><mrow><msub><mrow><mi>σ</mi></mrow><mrow><mn>1</mn><mo>,</mo><mn>1</mn></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≥</mo><mi>n</mi><mo>−</mo><mfenced><mrow><mrow><mo>(</mo><mi>k</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow><mo>/</mo><mn>2</mn></mrow></mfenced><mo>+</mo><mn>1</mn></mrow></math></span>, then one of the following (i)–(iv) holds: (i) <span><math><mi>G</mi></math></span> contains <span><math><mi>k</mi></math></span> vertex-disjoint subgraphs <span><math><mrow><msub><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>H</mi></mrow><mrow><mi>k</mi></mrow></msub></mrow></math></span> such that <span><math><mrow><msub><mrow><mo>⋃</mo></mrow><mrow><mn>1</mn><mo>≤</mo><mi>i</mi><mo>≤</mo><mi>k</mi></mrow></msub><mi>V</mi><mrow><mo>(</mo><msub><mrow><mi>H</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>)</mo></mrow><mo>=</mo><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> and for each <span><math><mi>i</mi></math></span>, <span><math><mrow><mn>1</mn><mo>≤</mo><mi>i</mi><mo>≤</mo><mi>k</mi></mrow></math></span>, <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> is a cycle or <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> or <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>; (ii) <span><math><mrow><mi>G</mi><mo>≅</mo><msub><mrow><mi>C</mi></mrow><mrow><mn>6</mn></mrow></msub></mrow></math></span> and <span><math><mrow><mi>k</mi><mo>=</mo><mn>2</mn></mrow></math></span>; (iii) <span><math><mrow><mi>G</mi><mo>≅</mo><msub><mrow><mi>C</mi></mrow><mrow><mn>8</mn></mrow></msub></mrow></math></span> and <span><math><mrow><mi>k</mi><mo>=</mo><mn>2</mn><mo>,</mo><mn>3</mn></mrow></math></span>; (iv) <span><math><mrow><mi>G</mi><mo>≅</mo><msub><mrow><mi>C</mi></mrow><mrow><mn>10</mn></mrow></msub></mrow></math></span> and <span><math><mrow><mi>k</mi><mo>=</mo><mn>4</mn></mrow></math></span>. This result is a bipartite graph version of the result of Enomoto and Li (2004). We actually prove a stronger result which gives us control on the number of cycles in the <span><math><mi>k</mi></math></span> vertex-disjoint subgraphs of (i).</div></div>\",\"PeriodicalId\":50573,\"journal\":{\"name\":\"Discrete Applied Mathematics\",\"volume\":\"378 \",\"pages\":\"Pages 635-646\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0166218X25005244\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166218X25005244","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

对于二部图G,设σ1,1(G)是G的不同部集中两个不相邻顶点的最小度和,证明了以下结果:如果G是2n≥k阶的平衡二部图,且σ1,1(G)≥n−(k−1)/2+1,则下列(i) - (iv)之一成立:(i) G包含k个顶点不相交的子图H1,…,Hk,使得∈1≤i≤kV(Hi)=V(G),且对于每一个i, 1≤i≤k, Hi是一个循环或K1或K2;(ii) G = C6, k=2;(iii) G = C8, k=2,3;(iv) G = C10, k=4。这个结果是Enomoto和Li(2004)的结果的二部图版本。实际上,我们证明了一个更强的结果,它使我们能够控制(i)的k个顶点不相交子图中的循环数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On partitioning a bipartite graph into cycles and degenerated cycles
For a bipartite graph G, let σ1,1(G) be the minimum degree sum of two non-adjacent vertices in different partite sets of G. We prove the following result: If G is a balanced bipartite graph of order 2nk, and if σ1,1(G)n(k1)/2+1, then one of the following (i)–(iv) holds: (i) G contains k vertex-disjoint subgraphs H1,,Hk such that 1ikV(Hi)=V(G) and for each i, 1ik, Hi is a cycle or K1 or K2; (ii) GC6 and k=2; (iii) GC8 and k=2,3; (iv) GC10 and k=4. This result is a bipartite graph version of the result of Enomoto and Li (2004). We actually prove a stronger result which gives us control on the number of cycles in the k vertex-disjoint subgraphs of (i).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Discrete Applied Mathematics
Discrete Applied Mathematics 数学-应用数学
CiteScore
2.30
自引率
9.10%
发文量
422
审稿时长
4.5 months
期刊介绍: The aim of Discrete Applied Mathematics is to bring together research papers in different areas of algorithmic and applicable discrete mathematics as well as applications of combinatorial mathematics to informatics and various areas of science and technology. Contributions presented to the journal can be research papers, short notes, surveys, and possibly research problems. The "Communications" section will be devoted to the fastest possible publication of recent research results that are checked and recommended for publication by a member of the Editorial Board. The journal will also publish a limited number of book announcements as well as proceedings of conferences. These proceedings will be fully refereed and adhere to the normal standards of the journal. Potential authors are advised to view the journal and the open calls-for-papers of special issues before submitting their manuscripts. Only high-quality, original work that is within the scope of the journal or the targeted special issue will be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信